Linear algebra and applications

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

Ja 5

Outline

1 Eigenvalues and eigenvectors

How to read this handout

- 1 the note is used with lecture in EE205 (you cannot master this topic just by reading this note) class activities include
 - graphical concepts, math derivation of details/steps in between
 - computer codes to illustrate examples
- 2 always read 'textbooks' after lecture
- 3 pay attention to the symbol ♥>; you should be able to prove such ♥> result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com

Eigenvalues and eigenvectors

Linear Independence

Definition: a set of vectors $\{v_1, v_2, \dots, v_n\}$ is **linearly independent** if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0 \Longrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

equivalent conditions:

• coefficients of $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_nv_n$ are uniquely determined, i.e.,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$$

implies
$$\alpha_k = \beta_k$$
 for $k = 1, 2, \dots, n$

lacktriangleright no vector v_i can be expressed as a linear combination of the other vectors

Examples

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 are independent

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} are not independent$$

Linear span

Definition: the linear span of a set of vectors

$$\{v_1, v_2, \dots, v_n\}$$

is the set of all linear combinations of v_1, \ldots, v_n

$$span\{v_1, v_2, \dots, v_n\} = \{a_1v_1 + a_2v_2 + \dots + a_nv_n \mid a_1, \dots, a_n \in \mathbf{R}\}$$

example:

$$\operatorname{span}\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right\} \text{ is the hyperplane on } x_1x_2 \text{ plane}$$

Eigenvalues

 $\lambda \in \mathbf{C}$ is called an **eigenvalue** of $A \in \mathbf{C}^{n \times n}$ if

$$\det(\lambda I - A) = 0$$

equivalent to:

• there exists nonzero $x \in \mathbf{C}^n$ s.t. $(\lambda I - A)x = 0$, i.e.,

$$Ax = \lambda x$$

any such x is called an **eigenvector** of A (associated with eigenvalue λ)

• there exists nonzero $w \in \mathbf{C}^n$ such that

$$w^T A = \lambda w^T$$

any such w is called a **left eigenvector** of A

Computing eigenvalues

- $lacksquare \mathcal{X}(\lambda) = \det(\lambda I A)$ is called the characteristic polynomial of A
- $\mathbf{Z}(\lambda) = 0$ is called the **characteristic equation** of A
- lacktriangle eigenvalues of A are the root of characteristic polynomial

Computing eigenvalues

- $\mathcal{X}(\lambda) = \det(\lambda I A)$ is called the **characteristic polynomial** of A
- $\mathcal{X}(\lambda) = 0$ is called the **characteristic equation** of A

the characteristic equation provides a way to compute the eigenvalues of A

$$A = \begin{bmatrix} 5 & 3 \\ -6 & -4 \end{bmatrix}$$
$$\mathcal{X}(\lambda) = \begin{vmatrix} \lambda - 5 & -3 \\ 6 & \lambda + 4 \end{vmatrix} = \lambda^2 - \lambda - 2 = 0$$

solving the characteristic equation gives

$$\lambda = 2, -1$$

Computing eigenvectors

for each eigenvalue of A, we can find an associated eigenvector from

$$(\lambda I - A)x = 0$$

where x is a **nonzero** vector

for A in page 10, let's find an eigenvector corresponding to $\lambda=2$

$$(\lambda I - A)x = \begin{bmatrix} -3 & -3 \\ 6 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies x_1 + x_2 = 0$$

the equation has many solutions, so we can form the set of solutions by

$$\left\{ x \in \mathbf{R}^2 \mid x = \begin{bmatrix} x_1 \\ -x_1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

this set is called the **eigenspace** of A corresponding to $\lambda = 2$

11 / 52

Eigenspace

eigenspace of A corresponding to λ is defined as the nullspace of $\lambda I - A$

$$\mathcal{N}(\lambda I - A)$$

equivalent definition: solution space of the homogeneous system

$$(\lambda I - A)x = 0$$

- an eigenspace is a vector space (by definition)
- 0 is in every eigenspace but it is not an eigenvector
- lacktriangle the nonzero vectors in an eigenspace are the eigenvectors of A

from page 11, any nonzero vector lies in the eigenspace is an eigenvector of A, e.g., $x=\begin{bmatrix} -1 & 1 \end{bmatrix}^T$

same way to find an eigenvector associated with $\lambda = -1$

$$(\lambda I - A)x = \begin{bmatrix} -6 & -3 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \implies 2x_1 + x_2 = 0$$

so the eigenspace corresponding to $\lambda = -1$ is

$$\left\{ x \mid x = \begin{bmatrix} x_1 \\ -2x_1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$$

and $x = \begin{bmatrix} 1 & -2 \end{bmatrix}^T$ is an eigenvector of A associated with $\lambda = -1$

Properties

- lacksquare if A is n imes n then $\mathcal{X}(\lambda)$ is a polynomial of order n
- lacksquare if A is $n \times n$ then there are n eigenvalues of A
- lacksquare even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} -2 & 0 & 1 \\ -6 & -2 & 0 \\ 19 & 5 & -4 \end{bmatrix}$$

- lacksquare if A and λ are real, we can choose the associated eigenvector to be real
- lacksquare if A is real then eigenvalues must occur in complex conjugate pairs
- if x is an eigenvector of A, so is αx for any $\alpha \in \mathbf{C}$, $\alpha \neq 0$
- lacksquare an eigenvector of A associated with λ lies in $\mathcal{N}(\lambda I A)$

Important facts

denote $\lambda(A)$ an eigenvalue of A

- $\lambda(\alpha A) = \alpha \lambda(A)$ for any $\alpha \in \mathbf{C}$
- lacktriangledown $\mathbf{tr}(A)$ is the sum of eigenvalues of A
- lacktriangledown det(A) is the product of eigenvalues of A
- lacksquare A and A^T share the same eigenvalues
- lacksquare $\lambda(A^m)=(\lambda(A))^m$ for any integer m
- \blacksquare A is invertible if and only if $\lambda=0$ is not an eigenvalue of A

Matrix powers

the $m{\rm th}$ power of a matrix A for a nonnegative integer m is defined as

$$A^m = \prod_{k=1}^m A$$

(the multiplication of m copies of A)

and A^0 is defined as the identity matrix, i.e., $A^0=I$

- $\ensuremath{\mathfrak{B}}$ Facts: if λ is an eigenvalue of A with an eigenvector v then
 - lacksquare λ^m is an eigenvalue of A^m
 - v is an eigenvector of A^m associated with λ^m

Invertibility and eigenvalues

A is not invertible if and only if there exists a nonzero x such that

$$Ax = 0$$
, or $Ax = 0 \cdot x$

which implies 0 is an eigenvalue of \boldsymbol{A}

another way to see this is that

A is not invertible
$$\iff$$
 $\det(A) = 0 \iff \det(0 \cdot I - A) = 0$

which means 0 is a root of the characteristic equation of A

conclusion [∞] the following statements are equivalent

- \blacksquare A is invertible
- $\mathcal{N}(A) = \{0\}$
- $\lambda = 0$ is not an eigenvalue of A

Eigenvalues of special matrices

diagonal matrix:

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

eigenvalues of D are the diagonal elements, i.e., $\lambda = d_1, d_2, \dots, d_n$ triangular matrix:

$$U = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad L = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

eigenvalues of L and U are the diagonal elements, i.e., $\lambda = a_{11}, \ldots, a_{nn}$

Similarity transform

two $n \times n$ matrices A and B are said to be **similar** if

$$B = T^{-1}AT$$

for some invertible matrix T

T is called a similarity transform

- **& invariant** properties under similarity transform:
 - $\bullet \det(B) = \det(A)$
 - $\mathbf{tr}(B) = \mathbf{tr}(A)$
 - A and B have the same eigenvalues

$$\det(\lambda I - B) = \det(\lambda T^{-1}T - T^{-1}AT) = \det(\lambda I - A)$$

Diagonalization

an $n \times n$ matrix A is **diagonalizable** if there exists T such that

$$T^{-1}AT = D$$

is diagonal

- $lue{}$ similarity transform by T diagonalizes A
- A and D are similar, so the entries of D must be the eigenvalues of A

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

• computing A^k is simple because $A^k = (TDT^{-1})^k = TD^kT^{-1}$

20 / 52

Eigenvalue decomposition

if A is diagonalizable then A admits the decomposition

$$A = TDT^{-1}$$

- D is diagonal containing the eigenvalues of A
- $lue{}$ columns of T are the corresponding eigenvectors of A
- lacksquare note that such decomposition is not unique (up to scaling in T)

Theorem: $A \in \mathbf{R}^{n \times n}$ is diagonalizable if and only if all n eigenvectors of A are independent

- a diagonalizable matrix is called a **simple** matrix
- \blacksquare if A is not diagonalizable, sometimes it is called *defective*

Proof (necessity)

suppose $\{v_1, \ldots, v_n\}$ is a *linearly independent* set of eigenvectors of A

$$Av_i = \lambda_i v_i \quad i = 1, \dots, n$$

we can express this equation in the matrix form as

$$A\begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

define $T = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ and $D = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$, so

$$AT = TD$$

since T is invertible (v_1, \ldots, v_n) are independent), finally we have

$$T^{-1}AT = D$$

Proof (sufficiency)

conversely, if there exists $T = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$ that diagonalizes A

$$T^{-1}AT = D = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$$

then AT = TD, or

$$Av_i = \lambda_i v_i, \quad i = 1, \dots, n$$

so $\{v_1,\ldots,v_n\}$ is a linearly independent set of eigenvectors of A

Example

find T that diagonalizes

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$

the characteristic equation is

$$\det(\lambda I - A) = \lambda^{3} - 11\lambda^{2} + 39\lambda - 45 = 0$$

the eigenvalues of A are $\lambda = 5, 3, 3$ an eigenvector associated with $\lambda_1 = 5$ can be found by

$$(5 \cdot I - A)x = \begin{bmatrix} 1 & 0 & -1 \\ -2 & 2 & -2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies x_1 - x_3 = 0$$

$$x_2 - 2x_3 = 0$$

$$x_1 - x_3 = 0$$

 $x_2 - 2x_2 = 0$

 x_3 is a free variable

an eigenvector is $v_1 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$

24 / 52

next, find an eigenvector associated with $\lambda_2=3$

$$(3 \cdot I - A)x = \begin{bmatrix} -1 & 0 & -1 \\ -2 & 0 & -2 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies x_1 + x_3 = 0$$

$$x_2, x_3 \text{ are free variables}$$

the eigenspace can be written by

$$\left\{ x \mid x = x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

hence we can find two independent eigenvectors

$$v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

corresponding to the repeated eigenvalue $\lambda_2 = 3$

easy to show that v_1, v_2, v_3 are linearly independent

we form a matrix T whose columns are v_1, v_2, v_n

$$T = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

then v_1, v_2, v_3 are linearly independent if and only if T is invertible

by a simple calculation, $det(T) = 2 \neq 0$, so T is invertible

hence, we can use this T to diagonalize A and it is easy to verify that

$$T^{-1}AT = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Not all matrices are diagonalizable

example:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

characteristic polynomial is $\det(\lambda I - A) = s^2$, so 0 is the only eigenvalue eigenvector satisfies $Ax = 0 \cdot x$, i.e.,

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \quad \Longrightarrow \quad \begin{aligned} x_2 &= 0 \\ x_1 \text{ is a free variable} \end{aligned}$$

so all eigenvectors has form $x = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$ where $x_1 \neq 0$

thus A cannot have two independent eigenvectors

Distinct eigenvalues

Theorem: if A has distinct eigenvalues, *i.e.*,

$$\lambda_i \neq \lambda_j, \quad i \neq j$$

then a set of corresponding eigenvectors are linearly independent

which further implies that A is diagonalizable

the converse is $\mathit{false} - \mathit{A}$ can have repeated eigenvalues but still be diagonalizable

example: all eigenvalues of I are 1 (repeated eigenvalues) but I is diagonal

Proof by contradiction

assume the eigenvectors are dependent

(simple case) let
$$Ax_k = \lambda_k x_k$$
, $k = 1, 2$

suppose there exists $\alpha_1, \alpha_2 \neq 0$

$$\alpha_1 x_1 + \alpha_2 x_2 = 0 \tag{1}$$

multiplying (1) by A: $\alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 = 0$

multiplying (1) by λ_1 : $\alpha_1\lambda_1x_1 + \alpha_2\lambda_1x_2 = 0$

subtracting the above from the previous equation

$$\alpha_2(\lambda_2 - \lambda_1)x_2 = 0$$

since $\lambda_1 \neq \lambda_2$, we must have $\alpha_2 = 0$ and consequently $\alpha_1 = 0$ the proof for a general case is left as an exercise

Algebraic and Geometric multiplicities

algebraic multiplicity of an eigenvalue λ_k is defined as the multiplicity of the root λ_k of the characteristic polynomial

example: the characteristic polynomial of \boldsymbol{A} is

$$\mathcal{X}(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)^2(\lambda - \lambda_3)^5$$

the multiplicity of λ_1, λ_2 and λ_3 are 1, 2 and 5 respectively

geometric multiplicity of an eigenvalue λ_k is defined as

$$\dim \mathcal{N}(\lambda_k I - A)$$

(the dimension of the corresponding eigenspace)

example: $A = I_n$; the geometric multiplicity of 1 is n

let λ be an eigenvalue of a matrix A $(n \times n)$

Theorem &

- \blacksquare the geometric multiplicity of λ is the number of linearly independent eigenvectors associated with λ
- algebraic and geometric multiplicities need not be equal
- let r be the algebraic multiplicity of λ

$$\dim \mathcal{N}(\lambda I - A) \le r$$

(the geometric multiplicity is less than or equal to the algebraic multiplicity)

 A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity

31 / 52

Matrix Power

the $m{\rm th}$ power of a matrix A for a nonnegative m is defined as

$$A^m = \prod_{k=1}^m A$$

and define $A^0 = I$

property:
$$A^rA^s = A^sA^r = A^{r+s}$$

a negative power of A is defined as

$$A^{-n} = (A^{-1})^n$$

n is a nonnegative integer and A is invertible

Matrix polynomial

a matrix polynomial is a polynomial with matrices as variables

$$p(A) = a_0 I + a_1 A + \dots + a_n A^n$$

for example
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$$

$$p(A) = 2I - 6A + 3A^{2} = 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 6\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} + 3\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}^{2}$$
$$= \begin{bmatrix} 2 & -3 \\ 0 & 11 \end{bmatrix}$$

Fact $ext{@}$ any two polynomials of A commute, *i.e.*, p(A)q(A)=q(A)p(A)

Matrix exponential via diagonalization

suppose A is diagonalizable, i.e., $\Lambda = T^{-1}AT \iff A = T\Lambda T^{-1}$ where $T = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$, i.e., the columns of T are eigenvectors of A then we have $A^k = T\Lambda^k T^{-1}$ thus diagonalization simplifies the expression of a matrix polynomial

$$p(A) = a_0 I + a_1 A + \dots + a_n A^n$$

= $a_0 T T^{-1} + a_1 T \Lambda T^{-1} + \dots + a_n T \Lambda^n T^{-1}$
= $T p(\Lambda) T^{-1}$

where

$$p(\Lambda) = \begin{bmatrix} p(\lambda_1) & 0 & \cdots & 0 \\ 0 & p(\lambda_2) & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p(\lambda_n) \end{bmatrix}$$

Eigenvectors of matrix polynomial

if λ and v be an eigenvalue and corresponding eigenvector of A then

- lacksquare $p(\lambda)$ is an eigenvalue of p(A)
- $lackbox{ }v$ is a corresponding eigenvector of p(A)

$$Av = \lambda v \implies A^2v = \lambda Av = \lambda^2 v \cdots \implies A^k v = \lambda^k v$$

thus

$$(a_0I + a_1A + \dots + a_nA^n)v = (a_0v + a_1\lambda + \dots + a_n\lambda^n)v$$

which shows that

$$p(A)v = p(\lambda)v$$

Matrix exponential

generalize the exponential function of a scalar

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

to an exponential function of a matrix

define matrix exponential as

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

for a square matrix A

the infinite series converges for all \boldsymbol{A}

example:
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

find all powers of A

$$A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad A^3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \dots, \quad A^k = A \quad \text{for } k = 2, 3, \dots$$

so by definition,

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = I + \sum_{k=1}^{\infty} \frac{A^{k}}{k!} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sum_{k=1}^{\infty} \frac{1}{k!} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} e & e - 1 \\ 0 & 1 \end{bmatrix}$$

never compute e^A by element-wise operation!

$$e^A \neq \begin{bmatrix} e^1 & e^1 \\ e^0 & e^0 \end{bmatrix}$$

Eigenvalues of matrix exponential

 $\ensuremath{\mathfrak{F}}$ if λ and v be an eigenvalue and corresponding eigenvector of A then

- lacksquare e^{λ} is an eigenvalue of e^{A}
- lacksquare v is a corresponding eigenvector of e^A

since e^A can be expressed as power series of A:

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

multiplying v on both sides and using $A^k v = \lambda^k v$ give

$$e^{A}v = v + Av + \frac{A^{2}v}{2!} + \frac{A^{3}v}{3!} + \cdots$$
$$= \left(1 + \lambda + \frac{\lambda^{2}}{2!} + \frac{\lambda^{3}}{3!} + \cdots\right)v$$
$$= e^{\lambda}v$$

38 / 52

Properties of matrix exponential

$$e^0 = I$$

$$e^{A+B} \neq e^A \cdot e^B$$

- if AB = BA, i.e., A and B commute, then $e^{A+B} = e^A \cdot e^B$
- $(e^A)^{-1} = e^{-A}$

 $\ensuremath{\mathfrak{F}}$ these properties can be proved by the definition of e^A

Computing e^A via diagonalization

if A is diagonalizable, *i.e.*,

$$T^{-1}AT = \Lambda = \mathbf{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

where λ_k 's are eigenvalues of A then e^A has the form

$$e^A = Te^{\Lambda}T^{-1}$$

- lacksquare computing e^{Λ} is simple since Λ is diagonal
- lacktriangle one needs to find eigenvectors of A to form the matrix T
- the expression of e^A follows from

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!} = \sum_{k=0}^{\infty} \frac{(T\Lambda T^{-1})^{k}}{k!} = \sum_{k=0}^{\infty} \frac{T\Lambda^{k} T^{-1}}{k!} = Te^{\Lambda} T^{-1}$$

• if A is diagonalizable, so is e^A

40 / 52

example: compute
$$f(A) = e^A$$
 given $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

the eigenvalues and eigenvectors of A are

$$\lambda_1 = 1, \ v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \lambda_2 = 2, \ v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \lambda_3 = 0, \ v_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

form $T = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ and compute $e^A = Te^\Lambda T^{-1}$

$$e^{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} e & 0 & 0 \\ 0 & e^{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1/2 \end{bmatrix} = \begin{bmatrix} e & e^{2} - e & (e^{2} - 2e + 1)/2 \\ 0 & e^{2} & (e^{2} - 1)/2 \\ 0 & 0 & 1 \end{bmatrix}$$

41 / 52

Applications to ordinary differential equations

we solve the following first-order ODEs for $t \ge 0$ where x(0) is given

scalar: $x(t) \in \mathbf{R}$ and $a \in \mathbf{R}$ is given

$$\dot{x}(t) = ax(t)$$

solution: $x(t) = e^{at}x(0)$, for $t \ge 0$

vector: $x(t) \in \mathbf{R}^n$ and $A \in \mathbf{R}^{n \times n}$ is given

$$\dot{x}(t) = Ax(t)$$

solution:
$$x(t) = e^{At}x(0)$$
, for $t \ge 0$

42 / 52

(use $\frac{de^{At}}{dt} = Ae^{At} = e^{At}A$)

Applications to difference equations

we solve the difference equations for $t = 0, 1, \ldots$ where x(0) is given

scalar: $x(t) \in \mathbf{R}$ and $a \in \mathbf{R}$ is given

$$x(t+1) = ax(t)$$

solution: $x(t) = a^t x(0)$, for t = 0, 1, 2, ...

vector: $x(t) \in \mathbf{R}^n$ and $A \in \mathbf{R}^{n \times n}$ is given

$$x(t+1) = Ax(t)$$

solution: $x(t) = A^t x(0)$, for t = 0, 1, 2, ...

solve the ODE

$$\ddot{y}(t) - \dot{y}(t) - 6y(t) = 0, \quad y(0) = 1, \dot{y}(0) = 0$$

solution: define

$$x(t) \triangleq \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \triangleq \begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}$$

write the equation into the vector form $\dot{x}(t) = Ax(t)$

$$\dot{x}(t) = \begin{bmatrix} \dot{y}(t) \\ \ddot{y}(t) \end{bmatrix} = \begin{bmatrix} \dot{y}(t) \\ \dot{y}(t) + 6y(t) \end{bmatrix}$$
$$= \begin{bmatrix} x_2(t) \\ 6x_1(t) + x_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 6 & 1 \end{bmatrix} x(t)$$

the initial condition is

$$x(0) = \begin{bmatrix} y(0) \\ \dot{y}(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

thus it is left to compute e^{At}

$$A = \begin{bmatrix} 0 & 1 \\ 6 & 1 \end{bmatrix}$$

the eigenvalues and eigenvectors of A are

$$\lambda_1 = -2, \ v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \quad \lambda_2 = 3, \ v_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

all eigenvalues are distinct, so A is diagonalizable and

$$e^{At} = Te^{\Lambda t}T^{-1}, \quad T = \begin{bmatrix} v_1 & v_2 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
$$e^{At} = \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} e^{-2t} & 0 \\ 0 & e^{3t} \end{bmatrix} \frac{1}{5} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

the closed-form expression of e^{At} is

$$e^{At} = \frac{1}{5} \begin{bmatrix} 3e^{-2t} + 2e^{3t} & -e^{-2t} + e^{3t} \\ -6e^{-2t} + 6e^{3t} & 2e^{-2t} + 3e^{3t} \end{bmatrix}$$

the solution to the vector equation is

$$x(t) = e^{At}x(0) = \frac{1}{5} \begin{bmatrix} 3e^{-2t} + 2e^{3t} & -e^{-2t} + e^{3t} \\ -6e^{-2t} + 6e^{3t} & 2e^{-2t} + 3e^{3t} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 3e^{-2t} + 2e^{3t} \\ -6e^{-2t} + 6e^{3t} \end{bmatrix}$$

hence the solution y(t) can be obtained by

$$y(t) = x_1(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) = \frac{1}{5} (3e^{-2t} + 2e^{3t}), \quad t \ge 0$$

solve the difference equation

$$y(t+2) - y(t+1) - 6y(t) = 0, \quad y(0) = 1, y(1) = 0$$

solution: define

$$x(t) \triangleq \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \triangleq \begin{bmatrix} y(t) \\ y(t+1) \end{bmatrix}$$

write the equation into the vector form x(t+1) = Ax(t)

$$x(t+1) = \begin{bmatrix} y(t+1) \\ y(t+2) \end{bmatrix} = \begin{bmatrix} y(t+1) \\ y(t+1) + 6y(t) \end{bmatrix}$$
$$= \begin{bmatrix} x_2(t) \\ 6x_1(t) + x_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 6 & 1 \end{bmatrix} x(t)$$

the initial condition is

$$x(0) = \begin{bmatrix} y(0) \\ y(1) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

thus it is left to compute A^t

$$A = \begin{bmatrix} 0 & 1 \\ 6 & 1 \end{bmatrix}$$

the eigenvalues and eigenvectors of A are

$$\lambda_1 = -2, \ v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \quad \lambda_2 = 3, \ v_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

all eigenvalues are distinct, so A is diagonalizable and

$$A^{t} = T\Lambda^{t}T^{-1}, \quad T = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix}, \quad \Lambda = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}$$

$$A^t = \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} (-2)^t & 0 \\ 0 & 3^t \end{bmatrix} \frac{1}{5} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

the closed-form expression of A^t is

$$A^{t} = \frac{1}{5} \begin{bmatrix} 2(3^{t}) + 3(-2)^{t} & 3^{t} - (-2)^{t} \\ 2(3^{t+1}) + 3(-2)^{t+1} & 3^{t+1} - (-2)^{t+1} \end{bmatrix}$$

for t = 0, 1, 2, ...

the solution to the vector equation is

$$x(t) = A^{t}x(0) = \frac{1}{5} \begin{bmatrix} 2(3^{t}) + 3(-2)^{t} & 3^{t} - (-2)^{t} \\ 2(3^{t+1}) + 3(-2)^{t+1} & 3^{t+1} - (-2)^{t+1} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 2(3^{t}) + 3(-2)^{t} \\ 2(3^{t+1}) + 3(-2)^{t+1} \end{bmatrix}$$

hence the solution y(t) can be obtained by

$$y(t) = x_1(t) = \frac{1}{5} (2(3^t) + 3(-2)^t), \quad t = 0, 1, 2, \dots$$

Softwares (MATLAB)

- [V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix V
 whose columns are the corresponding eigenvectors
 - the eigenvectors are normalized to have a unit 2-norm
 - eigenvalues are not necessarily sorted by magnitude
- **2** eigs(A) returns the 6 largest magnitude eigenvalues
- ${\tt 3}$ expm(A) computes the matrix exponential e^A
- $4 \exp(A)$ computes the exponential of the entries in A

Softwares (Python)

- \blacksquare D,V = numpy.eig(A) computes the eigenvalues and eigenvectors of A
- ${f 2}$ numpy.linalg.matrix_power(A, n) computes the n power of A
- ${f 3}$ scipy.linalg.expm(A) computes the matrix exponential of A
- 4 numpy.exp(A) computes the exponential of the entries of A

References

- W.K. Nicholson, Linear Algebra with Applications, McGraw-Hill, 2006
- 2 H.Anton and C. Rorres, *Elementary Linear Algebra*, John Wiley, 2011