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How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com
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Linear Independence

Definition: a set of vectors {v1,ve,...,v,} is linearly independent if
oy toagve+ - t+apv,=0— a1 =as=---=a, =0

equivalent conditions:

m coefficients of ajv1 + v + - - - + @y, are uniquely determined, i.e.,
101 + QU + - -+ Uy = Pror + Povg + - -+ By

implies a, = B, for k =1,2,...,n

m no vector v; can be expressed as a linear combination of the other vectors
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Examples

1 3
m (2|, [1]| areindependent
_1_ _0_
1] [3] [—1]
m |2|,[1],| O] areindependent
1] (0] | 1]
1] [3] [-1] [4
m (2],]1],] 0 ],]|2]| are not independent
1] [0 L 1] [O
1] [3] 2]
m (2]|,[1],]|—=1]| are not independent
1] (0] |-1]

Linear algebra and applications Jitkomut Songsiri 6 /52



Linear span

Definition: the linear span of a set of vectors
{Ul, V2y vty Un}
is the set of all linear combinations of v1,...,v,
span{vy, va, ..., v} = {a1v1 + agva + - -+ + apv, | a1,...,a, € R}

example:

span 0],|1 is the hyperplane on z1x5 plane
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Eigenvalues
) € Cis called an eigenvalue of A € C"*" if
det(\ — A) =0

equivalent to:

m there exists nonzero x € C" s.t. (A — A)x =0, ie,
Ax = Mz

any such z is called an eigenvector of A (associated with eigenvalue \)
m there exists nonzero w € C" such that

wl'A = M’
any such w is called a left eigenvector of A
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Computing eigenvalues

m X(A) =det(A — A) is called the characteristic polynomial of A
m X(\) =0 is called the characteristic equation of A

m eigenvalues of A are the root of characteristic polynomial
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Computing eigenvalues

m X(A\) = det(M — A) is called the characteristic polynomial of A
m X(\) =0 is called the characteristic equation of A

the characteristic equation provides a way to compute the eigenvalues of A

5 3
=% 4
XM)—‘Ag5 Xf4‘:A2—A—2:O

solving the characteristic equation gives

A=2 -1
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Computing eigenvectors

for each eigenvalue of A, we can find an associated eigenvector from
(M —-A)x=0
where x is a nonzero vector

for A in page 10, let's find an eigenvector corresponding to A = 2

()\I—A)az:[_ﬁ?) _63] [ij:o = z1+x3=0

the equation has many solutions, so we can form the set of solutions by

e o= 3]} { (3]

this set is called the eigenspace of A corresponding to A = 2
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Eigenspace

eigenspace of A corresponding to A is defined as the nullspace of AT — A
N — A)
equivalent definition: solution space of the homogeneous system

(M — Az =0

m an eigenspace is a vector space (by definition)
m 0 is in every eigenspace but it is not an eigenvector
m the nonzero vectors in an eigenspace are the eigenvectors of A
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from page 11, any nonzero vector lies in the eigenspace is an eigenvector of A, e.g.,

e=[-1 1"
same way to find an eigenvector associated with A = —1
[-6 =3] [z1] _ B
()\I—A>$—_6 3][372]_0 = 221 +29=0
so the eigenspace corresponding to A = —1 is
z|le=| " = span 1
2| TP 2

and z = [1 —2}T is an eigenvector of A associated with A = —1
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Properties

if Aisn xn then X()\) is a polynomial of order n
if A isn x n then there are n eigenvalues of A
even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

-2 0 1
A:E _21] A=1|-6 -2 0
19 5 —4

if A and X are real, we can choose the associated eigenvector to be real
if A is real then eigenvalues must occur in complex conjugate pairs

if x is an eigenvector of A, sois ax for any a € C, a # 0

an eigenvector of A associated with A lies in N(AI — A)

Linear algebra and applications Jitkomut Songsiri 14 / 52



Important facts

denote \(A) an eigenvalue of A
AMaA) = aA(A) for any a € C

tr(A) is the sum of eigenvalues of A

det(A) is the product of eigenvalues of A
m A and A7 share the same eigenvalues
A(AT) = A(4)

A(A™) = (A(A))™ for any integer m

m A is invertible if and only if A = 0 is not an eigenvalue of A
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Matrix powers

the mth power of a matrix A for a nonnegative integer m is defined as

m

(the multiplication of m copies of A)
and A is defined as the identity matrix, i.e., A =1

& Facts: if A is an eigenvalue of A with an eigenvector v then

m \" is an eigenvalue of A™

m v is an eigenvector of A™ associated with A\™
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Invertibility and eigenvalues
A is not invertible if and only if there exists a nonzero x such that
Ar =0, or Arxr=0-z
which implies 0 is an eigenvalue of A
another way to see this is that
Ais not invertible <= det(4)=0 <= det(0-1—A)=0

which means 0 is a root of the characteristic equation of A

conclusion & the following statements are equivalent
m A is invertible

= NV(A) = {0}

m A =0 is not an eigenvalue of A
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Eigenvalues of special matrices

diagonal matrix:

di 0 0
0 do 0
D= .
0 O dn
eigenvalues of D are the diagonal elements, i.e., A =di,do,...,d,
triangular matrix:
aip a2 - Ay aj; 0
0 ag - a2 a a2
U - L =
0 0 A ann anl an?

eigenvalues of L and U are the diagonal elements, i.e., A = a1, ..
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Similarity transform
two n X n matrices A and B are said to be similar if
B=T1AT
for some invertible matrix T’

T is called a similarity transform

& invariant properties under similarity transform:
m det(B) = det(A)
m tr(B) = tr(A4)

m A and B have the same eigenvalues

det(M — B) = det\T'T — T YAT) = det(M\ — A)
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Diagonalization

an n X n matrix A is diagonalizable if there exists T" such that
T'AT =D

is diagonal
m similarity transform by T diagonalizes A

m A and D are similar, so the entries of D must be the eigenvalues of A

A O - 0
0 X 0
D=1 . )
0 0 - A\,

m computing A¥ is simple because A*¥ = (TDT—1)k = TDFT!
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Eigenvalue decomposition
if A is diagonalizable then A admits the decomposition

A=TDT !

m D is diagonal containing the eigenvalues of A
m columns of 1" are the corresponding eigenvectors of A
m note that such decomposition is not unique (up to scaling in T')

Theorem: A € R"*" is diagonalizable if and only if all n eigenvectors of A are
independent

m a diagonalizable matrix is called a simple matrix

m if A is not diagonalizable, sometimes it is called defective
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Proof (necessity)
suppose {v1,...,v,} is a linearly independent set of eigenvectors of A

Avi:)\ivi izl,...,n

we can express this equation in the matrix form as

M O - 0
A[vl vy - vn]:[vl vy - Un] O >\:2 ' 0
0 0 .. A
define T = [Ul vy - vn] and D = diag(\y,...,\,), so
AT =TD
since T is invertible (v1, ..., v, are independent), finally we have
T'AT =D
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Proof (sufficiency)
conversely, if there exists T = [vl e vn} that diagonalizes A

T7YAT = D = diag(\1,..., \n)

then AT =TD, or
A'I}Z’Z)\Z‘Ui, i=1,...,n

so {v1,...,v,} is a linearly independent set of eigenvectors of A
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Example
find T that diagonalizes

N

Il
— N
S W O
=~ N

the characteristic equation is
det(A\ — A) =X — 110\ 439\ — 45 =0

the eigenvalues of A are A =5,3,3
an eigenvector associated with \; = 5 can be found by

1 0 —17 [= r =23 =0
Gb-I-Azx=|-2 2 =2| |z =0 = r9 — 223 =0
-1 0 1 I3

x3 is a free variable
. . T
an eigenvector is v; = [1 2 1]
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next, find an eigenvector associated with Ao = 3

-1 0 -1 [z

T1+x3=0
BIT—-Az=|-2 0 2| |z2| =0 =
1 0 —1| |3 X9, x3 are free variables
the eigenspace can be written by
0 -1 0 -1
z|x=zo |1| +23]| 0 = span 1{,]10
0 1 0 1

hence we can find two independent eigenvectors

0 -1
vo=|1], wv3=10
0 1

corresponding to the repeated eigenvalue Ao = 3
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easy to show that vy, v9, v3 are linearly independent

we form a matrix T' whose columns are vy, vo, Uy,

10 -1
T=1[v vo v3)=12 1 0
10 1

then vy, vo,v3 are linearly independent if and only if T is invertible
by a simple calculation, det(7") = 2 # 0, so T is invertible

hence, we can use this T' to diagonalize A and it is easy to verify that

5 0 0
T'AT =10 3 0
00 3
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Not all matrices are diagonalizable

example: A = {8 (1)]

characteristic polynomial is det(\] — A) = s2, so 0 is the only eigenvalue
eigenvector satisfies Az =0 -z, i.e.,
1 Tro = 0
b o]0 =
L2 z1 is a free variable

x

0] where x1 # 0

so all eigenvectors has form = = [

thus A cannot have two independent eigenvectors
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Distinct eigenvalues

Theorem: if A has distinct eigenvalues, i.e.,
N#N, iF]

then a set of corresponding eigenvectors are linearly independent
which further implies that A is diagonalizable
the converse is false — A can have repeated eigenvalues but still be diagonalizable

example: all eigenvalues of I are 1 (repeated eigenvalues) but I is diagonal
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Proof by contradiction

assume the eigenvectors are dependent
(simple case) let Az, = A\pxg, k=1,2

suppose there exists a1, g # 0
a1x1 + asxrs =0

multiplying (1) by A: a1 Aiz; + asdoza =0
multiplying (1) by A1 a1 iz + aghiza =0
subtracting the above from the previous equation
052()\2 — )\1)1’2 =0
since A1 # A2, we must have as = 0 and consequently ai; = 0
the proof for a general case is left as an exercise
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Algebraic and Geometric multiplicities

algebraic multiplicity of an eigenvalue \g is defined as the multiplicity of the root A
of the characteristic polynomial

example: the characteristic polynomial of A is
X)) = (A=A = X)X = A3)°
the multiplicity of A1, Ao and A3 are 1,2 and 5 respectively
geometric multiplicity of an eigenvalue Ay is defined as
dim N (A I — A)
(the dimension of the corresponding eigenspace)

example: A = I,; the geometric multiplicity of 1 is n
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let X be an eigenvalue of a matrix A (n x n)

Theorem &

m the geometric multiplicity of A is the number of linearly independent eigenvectors
associated with A

m algebraic and geometric multiplicities need not be equal
m let r be the algebraic multiplicity of A

dimN(A —A) <r

(the geometric multiplicity is less than or equal to the algebraic multiplicity)

m A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is
equal to the algebraic multiplicity
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Matrix Power

the mth power of a matrix A for a nonnegative m is defined as

—y
k=1
and define A9 =T
property: ATA% = ASA”T = ATTS
a negative power of A is defined as
AT = (AT

n is a nonnegative integer and A is invertible
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Matrix polynomial
a matrix polynomial is a polynomial with matrices as variables

p(A) =aol + a1 A+ -+ a, A"

2 1
for example A = [O 1]

01
2 -3
~ o 11

Fact & any two polynomials of A commute, i.e., p(A)q(A) = q(A)p(A)

o-swese <oy Yaf) 2ol 2

Linear algebra and applications Jitkomut Songsiri 33 /52



Matrix exponential via diagonalization

suppose A is diagonalizable, i.e., A =T 'AT <= A=TAT!

where T = [vl
then we have A¥ = TAFT—1

vn], i.e., the columns of T are eigenvectors of A

thus diagonalization simplifies the expression of a matrix polynomial

p(A) = all + a1 A+ +a, A"
Tp(A)T*
where
p()q) 0
p(A) = 0 p(%\2)
0 0
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Eigenvectors of matrix polynomial

if A and v be an eigenvalue and corresponding eigenvector of A then
m p(A) is an eigenvalue of p(A)
m v is a corresponding eigenvector of p(A)

Av=X v = A2v=Nv=X v ... =— Afp=)\Fy

thus
(apl + a1 A+ -+ anA")v = (apv + a1 A + - -+ + a, A")v

which shows that
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Matrix exponential

generalize the exponential function of a scalar

2 1133

T
=1+2x + — + Bl + -
to an exponential function of a matrix
define matrix exponential as
A2 A3 2 Ak
=I+A + — +t =+ = hill
3! k!
k=0
for a square matrix A
the infinite series converges for all A
Linear algebra and applications Jitkomut Songsiri
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Example

example: A = B (1)]

find all powers of A

ﬁ:BH’AEBéy”’M:Ahm:m”'

so by definition,

>N AP > AF 1 0] ~=1711 e e—1

A _ _ _ - _

DI A hJ*kao] b 1]
k=0 k=1 k=1

never compute e by element-wise operation !
11
A (& €
e
# [60 60}
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Eigenvalues of matrix exponential

& if A and v be an eigenvalue and corresponding eigenvector of A then

m e* is an eigenvalue of e

m v is a corresponding eigenvector of e
since e” can be expressed as power series of A:
A% A3

=T A+

multiplying v on both sides and using A¥v = A*v give

eAv =utAvt Ay g A
=(1+a+ 3 +4+ )0
:€>\U
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Properties of matrix exponential

mel =17
w ATB £ A B

m if AB= BA, ie., A and B commute, then ¢At8 = ¢4 . B
- (eA)fl —e A

¥ these properties can be proved by the definition of e
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Computing e via diagonalization
if A is diagonalizable, i.e.,

T7YAT = A = diag(\1, Ao, ..., \p)
where \;’s are eigenvalues of A then e has the form

e =Tt

m computing e is simple since A is diagonal
m one needs to find eigenvectors of A to form the matrix T'

m the expression of e follows from

AR S (TAT YD S TAFT!
I N

e’ = —
k! k!
k=0 k=0 k=0

=TT

m if A is diagonalizable, so is e
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Example

1 10
example: compute f(A) = e’ given A= [0 2 1
0 00
the eigenvalues and eigenvectors of A are
1 1 1
)\1:1,1)1: 0 5 /\2:2,2)2: 1 s )\3:0,’03: -1
0 0 2
form T'= [v1 v2 wv3] and compute e = TeAT !
11 1]fe 0 Of 1 -1 -1 e e2—e (e2—2e+1)/2
ed=10 1 -1/ |0 ¢ o[ |0 1 1/2=1]0 € (e —1)/2
0 0 2 0 0 1/(0 0 1/2 0 0 1
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Applications to ordinary differential equations

we solve the following first-order ODEs for ¢ > 0 where z(0) is given

scalar: z(t) € R and a € R is given

z(t) = ax(t)
solution: z(t) = e¢®x(0), for t > 0
vector: z(t) € R" and A € R™" is given

z(t) = Ax(t)

deAt
solution: xz(t) = e**x(0), for t > 0 (use o Aett = A A)
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Applications to difference equations

we solve the difference equations for t = 0,1, ... where z(0) is given

scalar: z(t) € R and a € R is given
x(t+1) =ax(t)

solution: z(t) = a’x(0), fort =0,1,2,...

vector: z(t) € R" and A € R"*" is given
x(t+1) = Ax(t)

solution: x(t) = Az(0), for t =0,1,2,...

Linear algebra and applications Jitkomut Songsiri 43 / 52



Example 1
solve the ODE

§(t) —y(t) — 6y(t) =0, y(0) =1,5(0) =0

)+
) =

xz
x

a |z
(

solution: define [

1
write the equation into the vector form (¢

0 = 8] Lt
- [6331(75) —(I—)azg(t)] -

the initial condition is
o-[36]-|

Linear algebra and applications

44 / 52



Example 1

thus it is left to compute e

-]

the eigenvalues and eigenvectors of A are
1 1
= —2 = = =
A1 ;U1 [_2} , A2 =3, v2 [3]
all eigenvalues are distinct, so A is diagonalizable and

A O
A Atmp—1 1
et = reMT T:[vl vg], A:[O )\J

a1 1) [e® 0]1[3 -1
© Tl23/lo e&t5l2 1
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Example 1

the closed-form expression of e is

eAt B 1 |: 36_2t + 263t 76—2t + e3t:|

5 | =62 + 6e3t 2e2t 4 33t

the solution to the vector equation is

1 36—2t +263t —6_2t +€3t 1
=(t) = EAtm(O) - 5 |:—6€2t +6e3 2e72t 4 3e3t| |0

1 [ e 2t 4 2¢3t }

5 | —6e 2 + 6

hence the solution y(t) can be obtained by

yt)=z1(t) = [1 0] x(t) == (3e > +2e%), t>0

[
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Example 2

solve the difference equation

y(t+2) —yt+1)—6y(t) =0, y(0)=1,y(1)=0

SO | R
write the equation into the vector form z(t + 1) = Ax(t)
z(t+1) = [ Et+ 23] [ q)ﬁ%y(t)}
(

i) t)

[6w1(t)+x2(t)] [2 ﬂ x(t)

solution: define

the initial condition is
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Example 2

thus it is left to compute A!
01
A=l

the eigenvalues and eigenvectors of A are

)\1 = _27 U1 = |:_12:| ) )\2 = 37 U2 = |:;:|

all eigenvalues are distinct, so A is diagonalizable and

At =TAT™Y, T=[un v, A:[)‘l O]

0 A2
S | A
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Example 2
the closed-form expression of A? is
L[ 2y 3 (-
5 2(3t+1) + 3(_2)t+1 3t+1 _ (_2)t+1

fort=0,1,2,...
the solution to the vector equation is

Y LT 2(3) +3(—2) 3dF—(=2) 11
z(t) = A'z(0) = 5 |: (3t+1) +3(_2)t+1 gt+l (_Q)t-H} [0]
1 2(3Y) +3(-2)!
- g [2(315—1-1) +3(_2)t+1}
hence the solution y(t) can be obtained by

y(t) = 21() = % (2(3") +3(=2)"), t=0,1,2,...
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Softwares (MATLAB)

[V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix V
whose columns are the corresponding eigenvectors
m the eigenvectors are normalized to have a unit 2-norm
m eigenvalues are not necessarily sorted by magnitude

eigs(A) returns the 6 largest magnitude eigenvalues
expm(A) computes the matrix exponential e
exp(A) computes the exponential of the entries in A
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Softwares (Python)

D,V = numpy.eig(A) computes the eigenvalues and eigenvectors of A
numpy.linalg.matrix_power (A, n) computes the n power of A
scipy.linalg.expm(A) computes the matrix exponential of A
numpy . exp (A) computes the exponential of the entries of A
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