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How to read this handout
1 the note is used with lecture in EE205 (you cannot master this topic just by

reading this note) – class activities include
graphical concepts, math derivation of details/steps in between
computer codes to illustrate examples

2 always read ’textbooks’ after lecture
3 pay attention to the symbol .; you should be able to prove such . result
4 each chapter has a list of references; find more formal details/proofs from in-text

citations
5 almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

6 typos and mistakes can be reported to jitkomut@gmail.com
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System of linear equations
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System of linear equations

a linear system of m equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... =

...
am1x1 + am2x2 + · · ·+ amnxn = bm

in matrix form: Ax = b

problem statement: given A, b, find a solution x (if exists)
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Example: solving ordinary differential equations

given y(0) = 1, ẏ(0) = −1, ÿ(0) = 0, solve
...
y + 6ÿ + 11ẏ + 6y = 0

the closed-form solution is

y(t) = C1e
−t + C2e

−2t + C3e
−3t

C1, C2 and C3 can be found by solving a set of linear equations

1 = y(0) = C1 + C2 + C3

−1 = ẏ(0) = −C1 − 2C2 − 3C3

0 = ÿ(0) = C1 + 4C2 + 9C3
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Example: linear static circuit

given V , R1, R2, . . . , R5, find the currents in each loop

V = (R1 +R4)i1 −R4i2

0 = −R4i1 + (R2 +R4 +R5)i2 −R5i3

0 = −R5i2 + (R3 +R5)i3

by KVL, we obtain a set of linear equations
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Example: polynomial interpolation
fit a polynomial

p(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

through n points (t1, y1), . . . , (tn, yn)

write out the conditions on x:

p(t1) = x1 + x2t1 + x3t
2
1 + · · ·+ xnt

n−1
1

p(t2) = x1 + x2t2 + x3t
2
2 + · · ·+ xnt

n−1
2

......
p(tn) = x1 + x2tn + x3t

2
n + · · ·+ xnt

n−1
n

problem data (parameters): (t1, y1), (t2, y2), . . . , (tn, yn)

problem variables: find x1, . . . , xn such that p(ti) = yi for all i
Linear algebra and applications Jitkomut Songsiri 8 / 323
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Special case: two variables
Examples:

2x1 − x2 = −1
4x1 − 2x2 = 2

2x1 − x2 = −1
x1 + x2 = −1

2x1 − x2 = −1
4x1 − 2x2 = −2

(a) no solution (b) one solution (c) many solutions

no solution if two lines are parallel but different interceptions on x2-axis
many solutions if the two lines are identical
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Geometrical interpretation

the set of solutions to a linear equation

a1x1 + a2x2 + · · ·+ anxn = b

can be interpreted as a hyperplane on Rn

a solution to m linear equations is an intersection of m hyperplanes
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Three types of linear equations
square if m = n (A is square)[

a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
underdetermined if m < n (A is fat)

[
a11 a12 a13
a21 a22 a23

]x1x2
x3

 =

[
b1
b2

]

overdetermined if m > n (A is skinny)a11 a12
a21 a22
a31 a32

[
x1
x2

]
=

b1b2
b3


Linear algebra and applications Jitkomut Songsiri 11 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Existence and uniqueness of solutions

given a system of linear equations existence:
no solution (the linear system is inconsistent)
a solution exists (the linear system is consistent)
uniqueness:

the solution is unique
there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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no solution
x1 + x2 = 1
2x1 + 2x2 = 0

x1 + x2 = 1
2x1 + x2 = −1
x1 − x2 = 2

unique solution

x1 + x2 = 1
2x1 − x2 = 0

⇒ x = (1/3, 2/3)
x1 + x2 = 0
2x1 + x2 = −1
x1 − x2 = −2

⇒ x = (−1, 1)

infinitely many solutions

x1 + x2 = 1
2x1 + 2x2 = 2

x1 − x2 + 2x3 = 1
−x1 + x3 = −1

3x1 − 2x2 + 3x3 = 3

x = (1− t, t), x = (1− t, 3t, t), t ∈ R
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Elementary row operations
define the augmented matrix of the linear equations on page 5 as

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... ...

am1 am2 · · · amn bm


the following operations on the row of the augmented matrix:

1 multiply a row through by a nonzero constant
2 interchange two rows
3 add a constant times one row to another

do not alter the solution set and yield a simpler system

these are called elementary row operations on a matrix
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Example

x1 + 3x2 + 2x3 = 2
−x1 + x2 + x3 = −1
2x1 − x2 − 2x3 = 3

augmented matrix
=⇒

 1 3 2 2
−1 1 1 −1
2 −1 −2 3


add the first row to the second (R1 +R2 → R2)

x1 + 3x2 + 2x3 = 2
4x2 + 3x3 = 1

2x1 − x2 − 2x3 = 3
=⇒

1 3 2 2
0 4 3 1
2 −1 −2 3


add −2 times the first row to the third (−2R1 +R3 → R3)

x1 + 3x2 + 2x3 = 2
4x2 + 3x3 = 1
−7x2 − 6x3 = −1

=⇒

1 3 2 2
0 4 3 1
0 −7 −6 −1
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multiply the second row by 1/4 (R2/4 → R2)

x1 + 3x2 + 2x3 = 2
x2 +

3
4x3 = 1

4
−7x2 − 6x3 = −1

=⇒

1 3 2 2
0 1 3/4 1/4
0 −7 −6 −1


add 7 times the second row to the third (7R2 +R3 → R3)

x1 + 3x2 + 2x3 = 2
x2 +

3
4x3 = 1

4
−3

4x3 = 3
4

=⇒

1 3 2 2
0 1 3/4 1/4
0 0 −3/4 3/4


multiply the third row by −4/3 (−4R3/3 → R3)

x1 + 3x2 + 2x3 = 2
x2 +

3
4x3 = 1

4
x3 = −1

=⇒

1 3 2 2
0 1 3/4 1/4
0 0 1 −1
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add −3/4 times the third row to the second (R2 − (3/4)R3 → R2)

x1 + 3x2 + 2x3 = 2
x2 = 1
x3 = −1

=⇒

1 3 2 2
0 1 0 1
0 0 1 −1


add −3 times the second row to the first (R1 − 3R2 → R1)

x1 + 2x3 = −1
x2 = 1
x3 = −1

=⇒

1 0 2 −1
0 1 0 1
0 0 1 −1


add −2 times the third row to the first (R1 − 2R2 → R1)

x1 = 1
x2 = 1
x3 = −1

=⇒

1 0 0 1
0 1 0 1
0 0 1 −1
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Gaussian elimination

a systematic procedure for solving systems of linear equations
based on performing row operations of the augmented matrix
simplifies the system of equations into an easy form where a solution can be
obtained by inspection
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Row echelon form

definition: a matrix is in row echelon form if
1 a row does not consist entirely of zeros, then the first nonzero number in the row

is a 1 (called a leading 1)
2 all nonzero rows are above any rows of all zeros
3 in any two successive rows that do not consist entirely of zeros, the leading 1 in

the lower row occurs farther to the right than the leading 1 in the higher row
examples: 1 4 −3 5

0 1 3 0
0 0 1 2

 ,

1 1 0
0 1 0
0 0 0

 ,

0 1 2 5 0
0 0 1 −1 0
0 0 0 0 1
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Reduced row echelon form

definition: a matrix is in reduced row echelon form if
it is in a row echelon form and
every leading 1 is the only nonzero entry in its column

examples: [
0 0
0 0

]
,

1 0 0 3
0 1 0 7
0 0 1 −1

 ,


0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0
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Facts about echelon forms
1 every matrix has a unique reduced row echelon form
2 row echelon forms are not unique

example:

 1 1 3 0
0 1 2 −1
0 0 0 0

 ∼

 1 0 1 1
0 1 2 −1
0 0 0 0


3 all row echelon forms of a matrix have the same number of zero rows
4 the leading 1’s always occur in the same positions in the row echelon forms of a

matrix A

5 the columns that contain the leading 1’s are called pivot columns of A
6 rank of A is defined as

the number of nonzero rows of (reduced) echelon form of A
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Inspecting a solution

simplify the augmented matrix to the reduced echelon form
read the solution from the reduced echelon form1 0 0 0

0 1 3 0
0 0 0 1

 =⇒ 0 · x3 = 1 (no solution)

1 0 0 −2
0 1 0 −1
0 0 1 5

 =⇒ x1 = −2, x2 = −1, x3 = 5 (unique solution)

1 0 2
0 1 1
0 0 0

 =⇒ x1 = 2, x2 = 1 (unique solution)
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Leading and free variables

1 0 3 −2
0 1 −1 1
0 0 0 0

 =⇒ x1 + 3x2 = −2
x2 − x3 = 1

definition:
the corresponding variables to the leading 1’s are called leading variables
the remaining variables are called free variables

here x1, x2 are leading variables and x3 is a free variable
let x3 = t and we obtain

x1 = −3t− 2, x2 = t+ 1, x3 = t

(many solutions)
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General solution 1 −5 1 4
0 0 0 0
0 0 0 0

 =⇒ x1 − 5x2 + x3 = 4

x1 is the leading variable, x2 and x3 are free variables
let x2 = s and x3 = t we obtain

x1 = 5s− t+ 4
x2 = s
x3 = t

(many solutions)

by assigning values to s and t, a set of parametric equations:

x1 = 5s− t+ 4
x2 = s
x3 = t

is called a general solution of the system
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Solution to a linear system
solving b = Ax with A ∈ Rm×n has only three possibilities

1 no solution: if rank([A|b]) ̸= rank(A) 1 1 3 0
0 1 2 −1
0 0 0 2

 ,

 1 0 2
0 1 1
0 0 −1


2 unique solution: if rank([A|b]) = rank(A) = n 1 1 3 0

0 1 2 −1
0 0 1 2

 ,

[
1 0 2
0 2 3

]

3 infinitely many solution: if rank([A|b]) = rank(A) < n[
1 1 3 0
0 1 2 −1

]
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Gaussian-Jordan elimination

simplify an augmented matrix to the reduced row echelon form
inspect the solution from the reduced row echelon form
the algorithm consists of two parts:

forward phase: zeros are introduced below the leading 1’s
backward phase: zeros are introduced above the leading 1’s
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Example
x1 + x2 + 2x3 = 8
−x1 − 2x2 + 3x3 = 1
3x1 − 7x2 + 4x3 = 10

=⇒

 1 1 2 8
−1 −2 3 1
3 −7 4 10


use row operations

R1 +R2 → R2 −3R1 +R3 → R3 (−1) ·R2 → R21 1 2 8
0 −1 5 9
3 −7 4 10

 1 1 2 8
0 −1 5 9
0 −10 −2 −14

 1 1 2 8
0 1 −5 −9
0 −10 −2 −14


10R2 +R3 → R3 R3/(−52) → R31 1 2 8

0 1 −5 −9
0 0 −52 −104

 1 1 2 8
0 1 −5 −9
0 0 1 2


(a row echelon form)

we have added zero below the leading 1’s (forward phase)
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continue performing row operations

5R3 +R2 → R2 −R2 +R1 → R1 −2R3 +R1 → R11 1 2 8
0 1 0 1
0 0 1 2

 1 0 2 7
0 1 0 1
0 0 1 2

 1 0 0 3
0 1 0 1
0 0 1 2


(reduced echelon form)

we have added zero above the leading 1’s (backward phase)

from the reduced echelon form, rank([A|b]) = rank(A) = n

the system has a unique solution

x1 = 3, x2 = 1, x3 = 2
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Homogeneous linear systems
definition:
a system of linear equations is said to be homogeneous if bj ’s are all zero

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
... =

...
am1x1 + am2x2 + · · ·+ amnxn = 0

x1 = x2 = · · · = xn = 0 is the trivial solution to Ax = 0

if (x1, x2, . . . , xn) is a solution, so is (αx1, αx2, . . . , αxn) for any α ∈ R
hence, if a solution exists, then the system has infinitely many solutions (by
choosing α arbitrarily)
if z and w are solutions to Ax = 0, so is z + αw for any α ∈ R
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example
x1 − x2 + 2x3 − x4 = 0
2x1 + x2 − 2x3 − 2x4 = 0
−x1 + 2x2 − 4x3 + x4 = 0
3x1 − 3x4 = 0

=⇒


1 −1 2 −1 0
2 1 −2 −2 0
−1 2 −4 1 0
3 0 0 −3 0


the reduced echelon form is

1 0 0 −1 0
0 1 −2 0 0
0 0 0 0 0
0 0 0 0 0

 =⇒ x1 − x4 = 0
x2 − 2x3 = 0

define x3 = s, x4 = t, the parametric equation is

x1 = t, x2 = 2s, x3 = s, x4 = t

there are two nonzero rows, so we have two (n− 2 = 2) free variables

Linear algebra and applications Jitkomut Songsiri 30 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Properties of homogeneous linear system

more properties:
the last column of the augmented matrix is entirely zero (and hence, can be
neglected in the augmented matrix)
if the reduced row echelon form has r nonzero rows, then the system has n− r
free variables
a homogeneous linear system with more unknowns than equations has infinitely
many solutions
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Range space of A

range space of A ∈ Rm×n is

R(A) = { y ∈ Rm | y = Ax, for x ∈ Rn }
rank(A) ≜ number of leading 1’s in row echelon form of A

y ∈ R(A) if and only if y is a linear combination of columns in A:

y = x1a1 + x2a2 + · · ·+ xnan

a linear system y = Ax has a solution if and only if y ∈ R(A) (existence)
equivalently, y = Ax has a solution if and only if rank(A) = rank([A | y])
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Nullspace of A

nullspace of A is
N (A) = { x ∈ Rn | Ax = 0 }

example:

A =

 2 −5 3 0
−2 −1 3 −1
5 −1 −3 2

 , =⇒ R =

1 0 0 1/2
0 1 0 1/4
0 0 1 1/12

 , x = x4


−1/2
−1/4
−1/12

1

 , x4 ∈ R

uniqueness of solution:
if the linear system has a solution, the solution is unique if and only if N (A) = {0}
if xp is a solution to Ax = b, and N (A) ̸= {0} then a general solution to Ax = b
can be expressed as x = xp + z where z ∈ N (A) (infinitely many solutions)
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Summary of solving linear systems

for A ∈ Rm×n, b ∈ Rm×n, the linear system Ax = b has a solution if and only if

b ∈ R(A) ⇐⇒ rank([A|b]) = rank(A)

if Ax = b has a solution, the uniqueness of the solution in three cases:

square A: the solution is unique ⇔ N (A) ̸= {0} ⇔ no zero rows in reduced
echelon form of A
tall A: the solution is unique ⇔ N (A) ̸= {0}
fat A: since N (A) ̸= {0} (always), the solutions are never unique

Linear algebra and applications Jitkomut Songsiri 34 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References

1 W.K. Nicholson, Linear Algebra with Applications, McGraw-Hill, 2006
2 H.Anton and C. Rorres, Elementary Linear Algebra, John Wiley, 2011
3 S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors,

Matrices, and Least squares, Cambridge, 2018

Linear algebra and applications Jitkomut Songsiri 35 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applications of linear equations
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Outline

least-squares problem
least-norm problem
numerical methods in solving linear equations
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Least-squares problem

setting: find a linear relationship between yi and xi,k

y = β1x1 + β2x2 + · · ·+ βpxp ≜ xTβ

given data as yi and xi1, xi2, . . . , xip for i = 1, 2, . . . , N

the data equation in a matrix form:
y1
y2
...
yN

 =


x11 x12 · · · x1n
x21 x22 · · · x2n
... ... ...

xm1 xm2 · · · xmn



β1
β2
...
βn

 ≜ y = Xβ

problem: given X ∈ Rm×n, y ∈ Rm, solve the linear system for β ∈ Rn
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Least-squares: problem statement
overdetermined linear equations:

Xβ = y, X is m× n with m > n

for most y, we cannot solve for β . recall the existence of a solution?

linear least-squares formulation:

minimize
β

∥y −Xβ∥22 =
m∑
i=1

(

n∑
j=1

Xijβj − yi)
2

r = y −Xβ is called the residual error
β with smallest residual norm ∥r∥ is called the least-squares solution
it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual
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Least-squares: solution
the zero gradient condition of LS objective is

d

dβ
∥y −Xβ∥22 = −XT (y −Xβ) = 0

which is equivalent to the normal equation

XTXβ = XT y

if X is full rank, it can be shown that XTX is invertible:
least-squares solution can be found by solving the normal equations
n equations in n variables with a positive definite coefficient matrix
the closed-form solution is β = (XTX)−1XT y

(XTX)−1XT is the left inverse of X
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Least-squares: data fitting
given data points {(ti, yi)}Ni=1, we aim to approximate y using a function g(t)

y = g(t) := β1g1(t) + β2g2(t) + · · ·+ βngn(t)

gk(t) : R → R is a basis function
polynomial functions: 1, t, t2, . . . , tn

sinusoidal functions: cos(ωkt), sin(ωkt) for k = 1, 2, . . . , n

the linear regression model can be formulated as
y1
y2
...
ym

 =


g1(t1) g2(t1) · · · gn(t1)
g1(t2) g2(t2) · · · gn(t2)

... ...
g1(tm) g2(tm) · · · gn(tm)



β1
β2
...
βn

 ≜ y = Xβ

often have m ≫ n, i.e., explaining y using a few parameters in the model
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Example
fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t2)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

1

data

6th-order polynomial fit

-5 -4 -3 -2 -1 0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

b
a
s
is

 f
u
n
c
ti
o
n
s

(right) the weighted sum of basis functions (xk) is the fitted polynomial
the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Least-squares: Finite Impulse Response model
given input/output data: {(y(t), u(t))}mt=0, we aim to estimate FIR model parameters

y(t) =

n−1∑
k=0

h(k)u(t− k)

determine h(0), h(1), . . . , h(n− 1) that gives FIR model output closest to y
y(n− 1)
y(n)

...
y(m)

 =


u(n− 1) u(n− 2) . . . u(0)
u(n) u(n− 1) . . . u(1)

... ... ... ...
u(m) u(m− 1) . . . u(m− n+ 1)




h(0)
h(1)

...
h(n− 1)


y(t) is a response to u(t), u(t− 1), . . . , u(t− (n− 1))

we did not use initial outputs y(0), y(1), . . . , y(n− 2) since there are no historical
input data for those outputs
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FIR: example

setting: y(t+ 1) = ay(t) + bu(t) , y(0) = 0

relationship between y and u: write the equation recursively

y(t) = aty(0) + at−1bu(0) + at−2bu(1) + · · ·+ bu(t− 1)

= aty(0) +
t−1∑
τ=0

at−1−τ bu(τ)

relate it with the convolution equation: y(t) =
∑∞

k=0 h(k)u(t− k)

h(0) = 0, h(1) = b, h(2) = ab, h(3) = a2b, . . . , h(k) = ak−1b

the actual h(k) decays as k increases but we estimate the first n sequences, i.e.,
ĥ(0), ĥ(1), . . . , ĥ(n− 1)
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FIR: example

setting: a = −0.5, b = 0.2,m = 50, n = 5, randomize u(t) ∈ {−1, 1}

0 10 20 30 40 50 60

Time

-0.4

-0.2

0

0.2

0.4
Output

actual

predicted by FIR

-0.1

0

0.1

0.2
Impulse response

0 2 4 6 8 10 12

Time

actual h(k) decays to zero, the first n
sequences of ĥ(k) are close to actual
values
the predicted output by FIR model is
close to the actual output
ĥ(k) is estimated by A\y in MATLAB,
which returns the least-squares
solution
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Least-norm problem

setting: given A ∈ Rm×n, b ∈ Rm where m < n and A is full row rank
(. by assumption, the system Ax = b has many solutions)

the least-norm problem is

minimize
x

∥x∥2 subject to Ax = b

find a point on hyperplane Ax = b that has the minimum 2-norm
it extends from solving an underdetermined system that has many solutions but
we specifically aim to find the solution with smallest norm
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Least-norm solution
the least-norm solution is

x⋆ = AT (AAT )−1y

since A is full rank, it can be shown that AAT is invertible
x⋆ is linear in y and the coefficient is the right inverse of A

Proof. let x be any solution to Ax = b

x− x⋆ is always orthogonal to x; by using A(x− x⋆) = 0

(x− x⋆)Tx⋆ = (x− x⋆)TAT (AAT )−1y = (A(x− x⋆))T (AAT )−1y = 0

∥x∥ is always greater than ∥x⋆∥, hence x⋆ is optimal

∥x∥2 = ∥x⋆ + x− x⋆∥2 = ∥x⋆∥2 + (x− x⋆)Tx⋆︸ ︷︷ ︸
0

+∥x− x⋆∥2 ≥ ∥x⋆∥2
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Least-norm application: control system
a first-order dynamical system

x(t+ 1) = ax(t) + bu(t), x is state, u is input

problem: given a, b ∈ R with |a| < 1 and x(0), find

u = (u(0), u(1), . . . , u(T − 1))

such that the values of x(T ), x(T − 1) are as desired and u has the minimum 2-norm

background: write x(t) recursively, we found that x(t) is linear in u

x(t) = atx(0) + at−1bu(0) + at−2bu(1) + · · ·+ bu(t− 1) = atx(0) +

t−1∑
τ=0

at−1−τ bu(τ)
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Least-norm application: control system

formulate the problem of design u to drive the state x(t) as desired . verify

[
x(T )− aTx(0)

x(T − 1)− aT−1x(0)

]
=

[
aT−1b aT−2b · · · ab b
aT−2b aT−3b · · · b 0

]


u(0)
u(1)

...
u(T − 2)
u(T − 1)

 ≜ y = Au

regulating the state is a problem of solving an underdetermined system
A is full row rank, so a solution of y = Au exists and there are many
we can try two choices of u:

1 least-norm solution
2 any other solution to y = Au
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Least-norm application: control system

setting: a = −0.8, b = 0.7, x(0) = 0, x(T − 1) = 2, x(T ) = 3

-2

0

2

4
State

0 2 4 6 8 10 12

state 1

state 2

-2

0

2

4

6

8
Input

0 2 4 6 8 10

Input 1: norm = 6.8

Input 2: norm = 7.17

different sequences of input drive the
state to different paths, but the values
of x(T ), x(T − 1) are as desired
the least-norm input has the minimum
norm – solved by pinv(A)*y
the second choice of input is obtained
from A\y in MATLAB, which sets
many zeros to u (not the least-norm
solution)
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Numerical methods in solving linear systems

solving linear systems by factorization approach
solving linear systems using softwares

square system
underdetermined system
overdetermined system
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Permutation system

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere0 1 0

1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0


facts: .

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A

P TP = I, so P−1 = P T (simple)
solving a permuatation system has no cost: Px = b =⇒ x = P T b
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Diagonal system
solve Ax = b when A is diagonal with no zero elements

a11 0 · · · 0
0 a22 · · · 0
... ... . . . ...
0 0 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := b2/a22

x3 := b3/a33
...

xn := bn/ann

cost: n flops
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Forward substitution
solve Ax = b when A is lower triangular with nonzero diagonal elements

a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...

an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

cost: 1 + 3 + 5 + · · ·+ (2n− 1) = n2 flops
Linear algebra and applications Jitkomut Songsiri 54 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Back substitution
solve Ax = b when A is upper triangular with nonzero diagonal elements

a11 · · · a1,n−1 a1n
... . . . ... ...
0 · · · an−1,n−1 an−1,n

0 · · · 0 ann




x1
...

xn−1

xn

 =


b1
...

bn−1

bn


algorithm:

xn := bn/ann

xn−1 := (bn−1 − an−1,nxn)/an−1,n−1

xn−2 := (bn−2 − an−2,n−1xn−1 − an−2,nxn)/an−2,n−2

...
x1 := (b1 − a12x2 − a13x3 − · · · − a1nxn)/a11

cost: n2 flops
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices

A = A1A2 · · ·Ak

then solve (A1A2 · · ·Ak)x = b by solving k equations

A1z1 = b, A2z2 = z1, . . . , Ak−1zk−1 = zk−2, Akx = zk−1

complexity of factor-solve method: flops = f + s

f is cost of factoring A as A = A1A2 · · ·Ak (factorization step)
s is cost of solving the k equations for z1, z2, …zk−1, x (solve step)
usually f ≫ s
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LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)

A = PLU

factorization:
P permutation matrix, L unit lower triangular, U upper triangular
factorization cost: (2/3)n3 if A has order n
not unique; there may be several possible choices for P , L, U
interpretation: permute the rows of A and factor P TA as P TA = LU

also known as Gaussian elimination with partial pivoting (GEPP)
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

A =

[
0 1
1 0

]
⇒ LU =

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
from this example,

if A could be factored as LU, it would require that l11u11 = a11 = 0

one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps
permutation: z1 = P T b (0 flops)
forward substitution: solve Lz2 = z1 (n2 flops)
back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3
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Softwares (MATLAB)

1 A\b
square system: it gives the solution: x = A−1b
overdetermined system: it gives the solution in the least-square sense
underdetermined system: it gives the solution to Ax = b where there are K nonzero
elements in x when K is the rank of A

2 rref(A): find the reduced row echelon of A
3 null(A): find independent vectors in the nullspace of A
4 [L,U,P] = lu(A): find LU factorization of A

Linear algebra and applications Jitkomut Songsiri 60 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Softwares (Python)

1 numpy.linalg.solve: solves a square system (same for scipy)
2 numpy.linalg.lstsq: solves a linear system in least-square sense (same for

scipy)
3 sympy.Matrix: sympy library for symbolic mathematics
4 scipy.linalg.null_space: find independent vectors in the nullspace of A
5 scipy.linalg.lu: find LU factorization of A
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Vector notation

n-vector x:

x =


x1
x2
...
xn


also written as x = (x1, x2, . . . , xn)

set of n-vectors is denoted Rn (Euclidean space)
xi: ith element or component or entry of x
it is common to denote x as a column vector
xT =

[
x1 x2 · · · xn

]
is then a row vector
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Special vectors

standard unit vector in Rn is a vector with all zero element except one element which
is equal to one

e1 =

10
1

 , e2 =

01
0

 , e3 =

00
1


ones vector is the n-vector with all its elements equal to one, denoted as 1

stacked vectors: if b, c, d are vectors (can be different sizes)

a =

bc
d

 , or a = (b, c, d)

is the stacked (or concatenated) vector of b, c, d
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Linear combination of vectors
if a1, a2, . . . , am are n-vectors, and α1, . . . , αm are scalars, the n-vector

β1a1 + β2a2 + · · ·+ βmam

is called a linear combination of the vectors a1, . . . , am

special linear combinations
any n-vector a can be expressed as a = a1e1 + a2e2 + · · ·+ anen

the linear combination with β1 = · · · = βm = 1 given by a1 + · · ·+ am is the sum
of the vectors
the linear combination with β1 = · · · = βm = 1/m given by (a1 + · · ·+ am)/m is
the average of the vectors
when the coefficients are non-negative and sum to one, i.e., β1 + · · ·+ βm = 1,
the linear combination is called a convex combination or weighted average
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Inner products

definition: the inner product of two n-vectors x, y is

x1y1 + x2y2 + · · ·+ xnyn

also known as the dot product of vectors x, y

notation: xT y

properties .

(αx)T y = α(xT y) for scalar α
(x+ y)T z = xT z + yT z

xT y = yTx
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Examples
unit vector: eTi a = ai the inner product of a vector with ei gives the ith element
of a
sum: 1Ta = a1 + a2 + · · ·+ an

average: (1/n)Ta = (a1 + · · ·+ an)/n

sum of squares: aTa = a21 + a22 + · · ·+ a2n
selective sum: let b be a vector all of whose entries are either 0 or 1; then bTa is
the sum of elements in a for which bi = 1

b = (0, 1, 0, 0, 1), bTa = a2 + a5

polynomial evaluation: let c be the n-vector represents the coefficients of
polynomial p with degree n− 1

p(x) = c1 + c2x+ · · ·+ cn−1x
n−2 + cnx

n−1

let t be a number and z = (1, t, t2, . . . , tn−1) then cT z = p(t)
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Euclidean norm

∥x∥ =
√
x21 + x22 + · · ·+ x2n =

√
xTx

properties
also written ∥x∥2 to distinguish from other norms
∥αx∥ = |α|∥x∥ for scalar α
∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)
∥x∥ ≥ 0 and ∥x∥ = 0 only if x = 0

interpretation
∥x∥ measures the magnitude or length of x
∥x− y∥ measures the distance between x and y
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Cluster centroid
given three clusters of data points

-6 -4 -2 0 2 4 6
-4

-2

0

2

4

6
Clustering

it can be shown that the representative is in fact,
the centroid of the group

zj = argminz ∥x1 − z∥2 + · · ·+ ∥xN − z∥2

zj = centroid =
1

N

∑
i∈Group j

xi

(the average of all points in group Gj)

the black marker is the representative of a cluster, defined by the point that has the
smallest sum of distance to all points in a cluster
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Inner product and norm of stacked vectors
inner product of stacked vectorsxy

z

T ab
c

 = xTa+ yT b+ zT c

norm of a stacked vector ∥∥∥∥∥∥
xy
z

∥∥∥∥∥∥
2

= ∥x∥2 + ∥y∥2 + ∥z∥2

norm of a distance

∥x− y∥2 = (x− y)T (x− y) = ∥x∥2 + ∥y∥2 − 2xT y
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Cauchy-Schwarz inequality
for a, b ∈ Rn

|aT b| ≤ ∥a∥2∥b∥2

example: for a1, . . . , an ∈ R with a1 + · · ·+ an = 1 show that

a21 + a22 + · · ·+ a2n ≥ 1

n

CS-inequality can be used to verify the triangle inequality

∥a+ b∥2 = ∥a∥2 + 2aT b+ ∥b∥2 ≤ ∥a∥2 + 2∥a∥∥b∥+ ∥b∥2 = (∥a+ b∥)2

angle between vectors: gives a similarity degree of two vectors

cos θ =
aT b

∥a∥∥b∥
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Matrix notation

an m× n matrix A is defined as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

 , or A = [aij ]m×n

aij are the elements, or coefficients, or entries of A
set of m× n-matrices is denoted Rm×n

A has m rows and n columns (m,n are the dimensions)
the (i, j) entry of A is also commonly denoted by Aij

A is called a square matrix if m = n
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Special matrices
zero matrix: A = 0

A =


0 0 · · · 0
0 0 · · · 0
... ... . . . 0
0 0 · · · 0


aij = 0, for i = 1, . . . ,m, j = 1, . . . , n

identity matrix: A = I

A =


1 0 · · · 0
0 1 · · · 0
... ... . . . 0
0 0 · · · 1


a square matrix with aii = 1, aij = 0 for i ̸= j
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diagonal matrix: a square matrix with aij = 0 for i ̸= j

A =


a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an


triangular matrix: a square matrix with zero entries in a triangular part

upper triangular lower triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann

 A =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann
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Multiplication

product of m× r-matrix A with r × n-matrix B:

(AB)ij = ai1b1j + ai2b2j + · · ·+ airbrj =

r∑
k=1

aik bkj

dimensions must be compatible: # of columns in A = # of rows in B

(AB)ij is the dot product of the ith row of A and the jth column of B
AB ̸= BA in general ! (even if the dimensions make sense)
there are exceptions, e.g., AI = IA for all square A

A(B + C) = AB +AC
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Matrix transpose

the transpose of an m× n-matrix A is

AT =


a11 a21 · · · am1

a12 a22 · · · am2
... ... . . . ...

a1n a2n · · · amn


properties .

AT is n×m

(AT )T = A

(αA+B)T = αAT +BT , α ∈ R
(AB)T = BTAT

a square matrix A is called symmetric if A = AT , i.e., aij = aji

Linear algebra and applications Jitkomut Songsiri 77 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Block matrix notation
example: 2× 2-block matrix A

A =

[
B C
D E

]
for example, if B,C,D,E are defined as

B =

[
2 1
3 8

]
, C =

[
0 1 7
1 9 1

]
, D =

[
0 1

]
, E =

[
−4 1 −1

]
then A is the matrix

A =

2 1 0 1 7
3 8 1 9 1
0 1 −4 1 −1


note: dimensions of the blocks must be compatible
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Column and Row partitions
write an m× n-matrix A in terms of its columns or its rows

A =
[
a1 a2 · · · an

]
=


bT1
bT2
...
bTm


aj for j = 1, 2, . . . , n are the columns of A
bTi for i = 1, 2, . . . ,m are the rows of A

example: A =

[
1 2 1
4 9 0

]

a1 =

[
1
4

]
, a2 =

[
2
9

]
, a3 =

[
1
0

]
, bT1 =

[
1 2 1

]
, bT2 =

[
4 9 0

]
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Matrix-vector product
product of m× n-matrix A with n-vector x

Ax =


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn


dimensions must be compatible: # columns in A = # elements in x

if A is partitioned as A =
[
a1 a2 · · · an

]
, then

Ax = a1x1 + a2x2 + · · ·+ anxn

Ax is a linear combination of the column vectors of A
the coefficients are the entries of x
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Product with standard unit vectors
post-multiply with a column vector

Aek =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn





0
0
...
1
...
0


=


a1k
a2k
...

amk

 = the kth column of A

pre-multiply with a row vector

eTkA =
[
0 0 · · · 1 · · · 0

]

a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn


=

[
ak1 ak2 · · · akn

]
= the kth row of A
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Trace

definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) = a11 + a22 + · · ·+ ann

example:

A =

2 1 4
0 −1 5
3 4 6


trace of A is 2− 1 + 6 = 7

properties .

tr(AT ) = tr(A)

tr(αA+B) = α tr(A) + tr(B)

tr(AB) = tr(BA)
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Inverse of matrices

definition: a square matrix A is called invertible or nonsingular if there exists B s.t.

AB = BA = I

B is called an inverse of A
it is also true that B is invertible and A is an inverse of B
if no such B can be found A is said to be singular

assume A is invertible
an inverse of A is unique
the inverse of A is denoted by A−1
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Facts about invertible matrices
assume A,B are invertible

facts .

(αA)−1 = α−1A−1 for nonzero α

AT is also invertible and (AT )−1 = (A−1)T

AB is invertible and (AB)−1 = B−1A−1

(A+B)−1 ̸= A−1 +B−1

, Theorem: for a square matrix A, the following statements are equivalent
1 A is invertible
2 Ax = 0 has only the trivial solution (x = 0)
3 the reduced echelon form of A is I

4 A is invertible if and only if det(A) ̸= 0
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Inverse of 2× 2 matrices
the matrix

A =

[
a b
c d

]
is invertible if and only if

ad− bc ̸= 0

and its inverse is given by

A−1 =
1

ad− bc

[
d −b
−c a

]

example:
A =

[
2 1
−1 3

]
, A−1 =

1

7

[
3 −1
1 2

]
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Elementary matrices
Definition: a matrix obtained by performing a single row operation on the identity
matrix In is called an elementary matrix
examples:1 0 0

0 1 0
k 0 1

 add k times the first row to the third row of I3

[
1 0
0 k

]
multiply a nonzero k with the second row of I21 0 0

0 0 1
0 1 0

 interchange the second and the third rows of I3

an elementary matrix is often denoted by E
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Inverse operations
row operations on E that produces I and vice versa

I → E E → I

add k times row i to row j add −k times row i to row j
multiply row i by k ̸= 0 multiply row i by 1/k
interchange row i and j interchange row i and j

E =

1 0 0
0 1 0
k 0 1

 =⇒

 1 0 0
0 1 0
−k 0 1

1 0 0
0 1 0
k 0 1

 =

1 0 0
0 1 0
0 0 1


E =

[
1 0
0 k

]
=⇒

[
1 0
0 1/k

] [
1 0
0 k

]
=

[
1 0
0 1

]

E =

1 0 0
0 0 1
0 1 0

 =⇒

1 0 0
0 0 1
0 1 0

1 0 0
0 0 1
0 1 0

 =

1 0 0
0 1 0
0 0 1


Linear algebra and applications Jitkomut Songsiri 87 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Facts ,

every elementary matrix is invertible
the inverse is also an elementary matrix

from the examples in page 87

E =

1 0 0
0 1 0
k 0 1

 =⇒ E−1 =

 1 0 0
0 1 0
−k 0 1


E =

[
1 0
0 k

]
=⇒ E−1 =

[
1 0
0 1/k

]

E =

1 0 0
0 0 1
0 1 0

 =⇒ E−1 =

1 0 0
0 0 1
0 1 0
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Row operations by matrix multiplication

assume A is m× n and E is obtained by performing a row operation on Im

EA = the matrix obtained by performing this same row operation on A

example:

A =

1 2 3
0 1 −1
1 1 0


add −2 times the third row to the second row of A

E =

1 0 0
0 1 −2
0 0 1

 EA =

 1 2 3
−2 −1 −1
1 1 0
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multiply 2 with the first row of A

E =

2 0 0
0 1 0
0 0 1

 EA =

2 4 6
0 1 −1
1 1 0


interchange the first and the third rows of A

E =

0 0 1
0 1 0
1 0 0

 EA =

1 1 0
0 1 −1
1 2 3
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Inverse via row operations

assume A is invertible
A is reduced to I by a finite sequence of row operations

E1, E2, . . . , Ek

such that
Ek · · ·E2E1A = I

the reduced echelon form of A is I

the inverse of A is therefore given by the product of elementary matrices

A−1 = Ek · · ·E2E1
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Example
write the augmented matrix

[
A | I

]
2 4 3 1 0 0
1 2 1 0 1 0
1 0 4 0 0 1

and apply row operations until the left side is reduced to I

−2R2 +R1 → R1

−R2 +R3 → R3

0 0 1 1 −2 0
1 2 1 0 1 0
0 −2 3 0 −1 1

R1 ↔ R2

1 2 1 0 1 0
0 0 1 1 −2 0
0 −2 3 0 −1 1

−3R2 +R3 → R3

1 2 1 0 1 0
0 0 1 1 −2 0
0 −2 0 −3 5 1
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R3/(−2) → R3

1 2 1 0 1 0
0 0 1 1 −2 0
0 1 0 3

2 −5
2 −1

2

R2 ↔ R3

1 2 1 0 1 0
0 1 0 3

2 −5
2 −1

2
0 0 1 1 −2 0

−2R2 +R1 → R1

1 0 1 −3 6 1
0 1 0 3

2 −5
2 −1

2
0 0 1 1 −2 0

−R3 +R1 → R1

1 0 0 −4 8 1
0 1 0 3

2 −5
2 −1

2
0 0 1 1 −2 0

the inverse of A is −4 8 1
3
2 −5

2 −1
2

1 −2 0
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Inverse of diagonal matrix

A =


a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an


a diagonal matrix is invertible iff the diagonal entries are all nonzero

aii ̸= 0, i = 1, 2, . . . , n

the inverse of A is given by

A−1 =


1/a1 0 · · · 0
0 1/a2 · · · 0
... ... . . . ...
0 · · · 0 1/an


the diagonal entries in A−1 are the inverse of the diagonal entries in A
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Inverse of triangular matrix

upper triangular lower triangular

A =


a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann

 A =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann


aij = 0 for i ≥ j aij = 0 for i ≤ j

a triangular matrix is invertible iff the diagonal entries are all nonzero

aii ̸= 0, ∀i = 1, 2, . . . , n

product of lower (upper) triangular matrices is lower (upper) triangular
the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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Inverse of symmetric matrix

symmetric matrix: A = AT

.

for any square matrix A, AAT and ATA are always symmetric
if A is symmetric and invertible, then A−1 is symmetric
if A is invertible, then AAT and ATA are also invertible

for a general A, the inverse of AT is (A−1)T please verify .
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Determinants
the determinant is a scalar value associated with a square matrix A

commonly denoted by det(A) or |A|
determinants of 2× 2 matrices:

det

[
a b
c d

]
= ad− bc

determinants of 3× 3 matrices: let A = {aij}

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32

− (a31a22a13 + a32a23a11 + a33a21a12)
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How to find determinants

for a square matrix of any order, it can be computed by
cofactor expansion
performing elementray row operations
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Minor and Cofactor

Minor of entry aij: denoted by Mij

the determinant of the resulting submatrix after deleting the ith row and jth
column of A

Cofactor of entry aij: denoted by Cij

Cij = (−1)(i+j)Mij

example:

A =

3 1 −2
5 0 2
1 −1 2

 , M23 =

∣∣∣∣ 3 1
1 −1

∣∣∣∣ = −4, C23 = (−1)(2+3)M23 = 4
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Determinants by Cofactor Expansion
Theorem: the determinant of an n× n-matrix A is given by

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

regardless of which row or column of A is chosen

example: pick the first row to compute det(A)

A =

3 1 −2
5 0 2
1 −1 2

 , det(A) = a11C11 + a12C12 + a13C13

det(A) = 3(−1)2
∣∣∣∣ 0 2
−1 2

∣∣∣∣+ 1(−1)3
∣∣∣∣ 5 2
1 2

∣∣∣∣− 2(−1)4
∣∣∣∣ 5 0
1 −1

∣∣∣∣
= 3(1)(2) + (−1)(8)− 2(1)(−5) = 8
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Basic properties of determinants

, let A,B be any square matrices
1 det(A) = det(AT )

2 if A has a row of zeros or a column of zeros, then det(A) = 0

3 det(αA) = αn det(A), α ̸= 0

4 If A has two rows (columns) that are equal, then det(A) = 0

5 det(A+B) ̸= det(A) + det(B) !
6 det(AB) = det(A) det(B)

7 det(A−1) = 1/ det(A)

8 A is invertible if and only if det(A) ̸= 0
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Basic properties of determinants

suppose the following is true
A and B are equal except for the entries in their kth row (column)
C is defined as that matrix identical to A and B except that its kth row (column)
is the sum of the kth rows (columns) of A and B

then we have
det(C) = det(A) + det(B)

example:

A =

1 0 1
2 1 1
1 2 −1

 , B =

1 0 1
2 1 1
3 0 2

 , C =

1 0 1
2 1 1
4 2 1


det(A) = 0, det(B) = −1, det(C) = −1
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Determinants of special matrices

the determinant of a diagonal or triangular matrix is given by the product of the
diagonal entries
det(I) = 1

(these properties can be proved from the def. of cofactor expansion)
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Determinants under row operations
multiply k to a row or a column∣∣∣∣∣∣

ka11 ka12 ka13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = k

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
interchange between two rows or two columns∣∣∣∣∣∣

a21 a22 a23
a11 a12 a13
a31 a32 a33

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
add k times the ith row (column) to the jth row (column)∣∣∣∣∣∣

a11 + ka21 a12 + ka22 a13 + ka23
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
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Example

B is obtained by performing the following operations on A

R2 + 3R1 → R2, R3 ↔ R1, −4R1 → R1

A =

 2 3 −2
3 1 0
−3 −3 3

 =⇒ det(B) = (−4) · (−1) · 1 · det(A)

the changes of det. under elementary operations lead to obvious facts .

det(αA) = αn det(A), α ̸= 0

If A has two rows (columns) that are equal, then det(A) = 0
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Determinants of elementary matrices
let B be obtained by performing a row operation on A then

B = EA and det(B) = det(EA)

E =

k 0 0
0 1 0
0 0 1

 , det(B) = k det(A) (det(E) = k)

E =

0 1 0
1 0 0
0 0 1

 , det(B) = − det(A) (det(E) = −1)

E =

1 k 0
0 1 0
0 0 1

 , det(B) = det(A) (det(E) = 1)

conclusion: det(EA) = det(E) det(A)
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Determinants of product and inverse

, let A,B be n× n matrices
A is invertible if and only if det(A) ̸= 0

if A is invertible, then det(A−1) = 1/ det(A)

det(AB) = det(A) det(B)
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Adjugate formula
the adjugate of A is the transpose of the matrix of cofactors from A

adj(A) =


C11 C21 · · · Cn1

C12 C22 · · · Cn2
... ... . . . ...

C1n C2n · · · Cnn


if A is invertible then

A−1 =
1

det(A)
adj(A)

Proof.
the cofactor expansion using the cofactors from different row is zero

ai1Ck1 + ai2Ck2 + . . .+ ainCkn = 0, for i ̸= k

A adj(A) = det(A) · I
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Cramer’s rule

consider a linear system Ax = b when A is square

if A is invertible then the solution is unique and given by

x = A−1b

each component of x can be calculated by using the Cramer’s rule

Cramer’s rule
x1 =

|A1|
|A|

, x2 =
|A2|
|A|

, . . . , xn =
|An|
|A|

where Aj is the matrix obtained by replacing b in the jth column of A

(its proof is left as an exercise)
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Example

A =

3 1 −2
5 0 2
1 −1 2

 , b =

21
2


since det(A) = 8, A is invertible and the solution is

x = A−1b =
1

8

 2 0 2
−8 8 −16
−5 4 −5

21
2

 =

 1
−5
−2


using Cramer’s rule gives

x1 =
1

8

∣∣∣∣∣∣
2 1 −2
1 0 2
2 −1 2

∣∣∣∣∣∣ , x2 =
1

8

∣∣∣∣∣∣
3 2 −2
5 1 2
1 2 2

∣∣∣∣∣∣ , x3 =
1

8

∣∣∣∣∣∣
3 1 2
5 0 1
1 −1 2

∣∣∣∣∣∣
which yields

x1 = 1, x2 = −5, x3 = −2

Linear algebra and applications Jitkomut Songsiri 110 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pseudo-inverse (Penrose Theorem)

one can have a notion of ’inverse’ for a non-square matrix

Penrose’s Theorem: given A ∈ Rm×n, there is exactly one n×m matrix B such that
1 ABA = A and BAB = B

2 both AB and BA are symmetric

definition: the pseudo inverse of A ∈ Rm×n is the unique n×m matrix A† such that
1 AA†A = A and A†AA† = A†

2 both AA† and A†A are symmetric
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Pseudo-inverse
consider a full rank matrix A ∈ Rm×n in three cases

tall matrix: A is full rank ⇔ columns of A are LI ⇔ ATA is invertible

((ATA)−1AT )A = (ATA)−1(ATA) = I

the pseudo-inverse of A (or left-inverse) is A† = (ATA)−1AT

wide matrix: A is full rank ⇔ row of A are LI ⇔ AAT is invertible

A(AT (AAT )−1) = (AAT )(AAT )−1 = I

the pseudo-inverse of A (or right-inverse) is A† = AT (AAT )−1

square matrix: A is full rank ⇔ A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A−1

. the pseudo inverses of the three cases have the same dimension ?
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Example

A =

[
0 2 1
−2 1 −2

]
, A† = AT (AAT )−1 =

 0 −2/9
2/5 1/9
1/5 −2/9


A =

−2 −1
2 −1
−1 0

 , A† = (ATA)−1AT =

[
−2/9 2/9 1/9
−1/2 −1/2 0

]

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse
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Softwares (MATLAB)

1 eye(n) creates an identity matrix of size n

2 inv(A) finds the inverse of A (not used for large dimension)
3 A\eye(n) finds the inverse of a square matrix A

4 pinv(A) gives a pseudoinverse of A, denoted by A†

if A is square, a pseudoinverse is the inverse of A
if A is tall, A† = (ATA)−1AT is a left inverse of A
if A is fat, A† = AT (AAT )−1 is a right inverse of A

5 x = pinv(A)*b solves the linear system Ax = b

if A is square, x = A−1b
if A is tall, x is the solution to the least-square problem: minimize ∥Ax− b∥2
if A is fat, x is the least-norm solution that satisfies Ax = b

6 det(A) finds the determinant of A
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Softwares (Python)

1 numpy.eye creates an identity matrix
2 numpy.linalg.inv finds the inverse of a square matrix A

3 numpy.linalg.pinv gives a pseudoinverse of A
4 numpy.linalg.det find the determinants of A
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Eigenvalues and eigenvectors
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Linear Independence

Definition: a set of vectors {v1, v2, . . . , vn} is linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 =⇒ α1 = α2 = · · · = αn = 0

equivalent conditions:
coefficients of α1v1 + α2v2 + · · ·+ αnvn are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn

implies αk = βk for k = 1, 2, . . . , n

no vector vi can be expressed as a linear combination of the other vectors
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Examples
12
1

 ,

31
0

 are independent

12
1

 ,

31
0

 ,

−1
0
1

 are independent

12
1

 ,

31
0

 ,

−1
0
1

 ,

42
0

 are not independent

12
1

 ,

31
0

 ,

 2
−1
−1

 are not independent
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Linear span

Definition: the linear span of a set of vectors

{v1, v2, . . . , vn}

is the set of all linear combinations of v1, . . . , vn

span{v1, v2, . . . , vn} = {a1v1 + a2v2 + · · ·+ anvn | a1, . . . , an ∈ R}

example:

span


10
0

 ,

01
0

 is the hyperplane on x1x2 plane
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Eigenvalues
λ ∈ C is called an eigenvalue of A ∈ Cn×n if

det(λI −A) = 0

equivalent to:
there exists nonzero x ∈ Cn s.t. (λI −A)x = 0, i.e.,

Ax = λx

any such x is called an eigenvector of A (associated with eigenvalue λ)
there exists nonzero w ∈ Cn such that

wTA = λwT

any such w is called a left eigenvector of A
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Computing eigenvalues

X (λ) = det(λI −A) is called the characteristic polynomial of A
X (λ) = 0 is called the characteristic equation of A
eigenvalues of A are the root of characteristic polynomial
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Computing eigenvalues

X (λ) = det(λI −A) is called the characteristic polynomial of A
X (λ) = 0 is called the characteristic equation of A

the characteristic equation provides a way to compute the eigenvalues of A

A =

[
5 3
−6 −4

]

X (λ) =

∣∣∣∣ λ− 5 −3
6 λ+ 4

∣∣∣∣ = λ2 − λ− 2 = 0

solving the characteristic equation gives

λ = 2,−1
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Computing eigenvectors
for each eigenvalue of A, we can find an associated eigenvector from

(λI −A)x = 0

where x is a nonzero vector
for A in page 123, let’s find an eigenvector corresponding to λ = 2

(λI −A)x =

[
−3 −3
6 6

] [
x1
x2

]
= 0 =⇒ x1 + x2 = 0

the equation has many solutions, so we can form the set of solutions by{
x ∈ R2

∣∣∣∣ x =

[
x1
−x1

]}
= span

{[
1
−1

]}
this set is called the eigenspace of A corresponding to λ = 2
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Eigenspace

eigenspace of A corresponding to λ is defined as the nullspace of λI −A

N (λI −A)

equivalent definition: solution space of the homogeneous system

(λI −A)x = 0

an eigenspace is a vector space (by definition)
0 is in every eigenspace but it is not an eigenvector
the nonzero vectors in an eigenspace are the eigenvectors of A

Linear algebra and applications Jitkomut Songsiri 125 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

from page 124, any nonzero vector lies in the eigenspace is an eigenvector of A, e.g.,
x =

[
−1 1

]T
same way to find an eigenvector associated with λ = −1

(λI −A)x =

[
−6 −3
6 3

] [
x1
x2

]
= 0 =⇒ 2x1 + x2 = 0

so the eigenspace corresponding to λ = −1 is{
x

∣∣∣∣ x =

[
x1

−2x1

]}
= span

{[
1
−2

]}
and x =

[
1 −2

]T is an eigenvector of A associated with λ = −1

Linear algebra and applications Jitkomut Songsiri 126 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Properties

if A is n× n then X (λ) is a polynomial of order n
if A is n× n then there are n eigenvalues of A
even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

A =

[
2 −1
1 2

]
, A =

−2 0 1
−6 −2 0
19 5 −4


if A and λ are real, we can choose the associated eigenvector to be real
if A is real then eigenvalues must occur in complex conjugate pairs
if x is an eigenvector of A, so is αx for any α ∈ C, α ̸= 0

an eigenvector of A associated with λ lies in N (λI −A)
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Important facts

denote λ(A) an eigenvalue of A
λ(αA) = αλ(A) for any α ∈ C
tr(A) is the sum of eigenvalues of A
det(A) is the product of eigenvalues of A
A and AT share the same eigenvalues .

λ(AT ) = λ(A) .

λ(Am) = (λ(A))m for any integer m
A is invertible if and only if λ = 0 is not an eigenvalue of A .
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Matrix powers

the mth power of a matrix A for a nonnegative integer m is defined as

Am =

m∏
k=1

A

(the multiplication of m copies of A)

and A0 is defined as the identity matrix, i.e., A0 = I

, Facts: if λ is an eigenvalue of A with an eigenvector v then
λm is an eigenvalue of Am

v is an eigenvector of Am associated with λm
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Invertibility and eigenvalues
A is not invertible if and only if there exists a nonzero x such that

Ax = 0, or Ax = 0 · x

which implies 0 is an eigenvalue of A
another way to see this is that

A is not invertible ⇐⇒ det(A) = 0 ⇐⇒ det(0 · I −A) = 0

which means 0 is a root of the characteristic equation of A
conclusion . the following statements are equivalent

A is invertible
N (A) = {0}
λ = 0 is not an eigenvalue of A
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Eigenvalues of special matrices
diagonal matrix:

D =


d1 0 · · · 0
0 d2 · · · 0
... ... . . . ...
0 0 · · · dn


eigenvalues of D are the diagonal elements, i.e., λ = d1, d2, . . . , dn
triangular matrix:

U =


a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann

 L =


a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann



eigenvalues of L and U are the diagonal elements, i.e., λ = a11, . . . , ann
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Similarity transform
two n× n matrices A and B are said to be similar if

B = T−1AT

for some invertible matrix T

T is called a similarity transform

, invariant properties under similarity transform:
det(B) = det(A)

tr(B) = tr(A)

A and B have the same eigenvalues

det(λI −B) = det(λT−1T − T−1AT ) = det(λI −A)
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Diagonalization

an n× n matrix A is diagonalizable if there exists T such that

T−1AT = D

is diagonal
similarity transform by T diagonalizes A

A and D are similar, so the entries of D must be the eigenvalues of A

D =


λ1 0 · · · 0
0 λ2 0
... ... . . . ...
0 0 · · · λn


computing Ak is simple because Ak = (TDT−1)k = TDkT−1
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Eigenvalue decomposition
if A is diagonalizable then A admits the decomposition

A = TDT−1

D is diagonal containing the eigenvalues of A
columns of T are the corresponding eigenvectors of A
note that such decomposition is not unique (up to scaling in T )

Theorem: A ∈ Rn×n is diagonalizable if and only if all n eigenvectors of A are
independent

a diagonalizable matrix is called a simple matrix
if A is not diagonalizable, sometimes it is called defective

Linear algebra and applications Jitkomut Songsiri 134 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof (necessity)
suppose {v1, . . . , vn} is a linearly independent set of eigenvectors of A

Avi = λivi i = 1, . . . , n

we can express this equation in the matrix form as

A
[
v1 v2 · · · vn

]
=

[
v1 v2 · · · vn

]

λ1 0 · · · 0
0 λ2 0
... ... . . . ...
0 0 · · · λn


define T =

[
v1 v2 · · · vn

]
and D = diag(λ1, . . . , λn), so

AT = TD

since T is invertible (v1, . . . , vn are independent), finally we have

T−1AT = D
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Proof (sufficiency)

conversely, if there exists T =
[
v1 · · · vn

]
that diagonalizes A

T−1AT = D = diag(λ1, . . . , λn)

then AT = TD, or
Avi = λivi, i = 1, . . . , n

so {v1, . . . , vn} is a linearly independent set of eigenvectors of A
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Example
find T that diagonalizes

A =

4 0 1
2 3 2
1 0 4


the characteristic equation is

det(λI −A) = λ3 − 11λ2 + 39λ− 45 = 0

the eigenvalues of A are λ = 5, 3, 3
an eigenvector associated with λ1 = 5 can be found by

(5 · I −A)x =

 1 0 −1
−2 2 −2
−1 0 1

x1x2
x3

 = 0 =⇒

x1 − x3 = 0

x2 − 2x3 = 0

x3 is a free variable

an eigenvector is v1 =
[
1 2 1

]T
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next, find an eigenvector associated with λ2 = 3

(3 · I −A)x =

−1 0 −1
−2 0 −2
−1 0 −1

x1x2
x3

 = 0 =⇒
x1 + x3 = 0

x2, x3 are free variables

the eigenspace can be written byx

∣∣∣∣∣∣ x = x2

01
0

+ x3

−1
0
1

 = span


01
0

 ,

−1
0
1


hence we can find two independent eigenvectors

v2 =

01
0

 , v3 =

−1
0
1


corresponding to the repeated eigenvalue λ2 = 3
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easy to show that v1, v2, v3 are linearly independent

we form a matrix T whose columns are v1, v2, vn

T =
[
v1 v2 v3

]
=

1 0 −1
2 1 0
1 0 1


then v1, v2, v3 are linearly independent if and only if T is invertible

by a simple calculation, det(T ) = 2 ̸= 0, so T is invertible

hence, we can use this T to diagonalize A and it is easy to verify that

T−1AT =

5 0 0
0 3 0
0 0 3



Linear algebra and applications Jitkomut Songsiri 139 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Not all matrices are diagonalizable

example: A =

[
0 1
0 0

]
characteristic polynomial is det(λI −A) = s2, so 0 is the only eigenvalue

eigenvector satisfies Ax = 0 · x, i.e.,

[
0 1
0 0

] [
x1
x2

]
= 0 =⇒

x2 = 0

x1 is a free variable

so all eigenvectors has form x =

[
x1
0

]
where x1 ≠ 0

thus A cannot have two independent eigenvectors
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Distinct eigenvalues

Theorem: if A has distinct eigenvalues, i.e.,

λi ̸= λj , i ̸= j

then a set of corresponding eigenvectors are linearly independent

which further implies that A is diagonalizable

the converse is false – A can have repeated eigenvalues but still be diagonalizable

example: all eigenvalues of I are 1 (repeated eigenvalues) but I is diagonal
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Proof by contradiction
assume the eigenvectors are dependent
(simple case) let Axk = λkxk, k = 1, 2

suppose there exists α1, α2 ̸= 0

α1x1 + α2x2 = 0 (1)

multiplying (1) by A: α1λ1x1 + α2λ2x2 = 0

multiplying (1) by λ1: α1λ1x1 + α2λ1x2 = 0

subtracting the above from the previous equation

α2(λ2 − λ1)x2 = 0

since λ1 ̸= λ2, we must have α2 = 0 and consequently α1 = 0

the proof for a general case is left as an exercise
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Algebraic and Geometric multiplicities
algebraic multiplicity of an eigenvalue λk is defined as the multiplicity of the root λk

of the characteristic polynomial

example: the characteristic polynomial of A is

X (λ) = (λ− λ1)(λ− λ2)
2(λ− λ3)

5

the multiplicity of λ1, λ2 and λ3 are 1, 2 and 5 respectively

geometric multiplicity of an eigenvalue λk is defined as

dimN (λkI −A)

(the dimension of the corresponding eigenspace)

example: A = In; the geometric multiplicity of 1 is n
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let λ be an eigenvalue of a matrix A (n× n)

Theorem ,

the geometric multiplicity of λ is the number of linearly independent eigenvectors
associated with λ

algebraic and geometric multiplicities need not be equal
let r be the algebraic multiplicity of λ

dimN (λI −A) ≤ r

(the geometric multiplicity is less than or equal to the algebraic multiplicity)
A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is
equal to the algebraic multiplicity
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Matrix Power

the mth power of a matrix A for a nonnegative m is defined as

Am =

m∏
k=1

A

and define A0 = I

property: ArAs = AsAr = Ar+s

a negative power of A is defined as

A−n = (A−1)n

n is a nonnegative integer and A is invertible
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Matrix polynomial
a matrix polynomial is a polynomial with matrices as variables

p(A) = a0I + a1A+ · · ·+ anA
n

for example A =

[
2 1
0 −1

]

p(A) = 2I − 6A+ 3A2 = 2

[
1 0
0 1

]
− 6

[
2 1
0 −1

]
+ 3

[
2 1
0 −1

]2
=

[
2 −3
0 11

]

Fact . any two polynomials of A commute, i.e., p(A)q(A) = q(A)p(A)
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Matrix exponential via diagonalization
suppose A is diagonalizable, i.e., Λ = T−1AT ⇐⇒ A = TΛT−1

where T =
[
v1 · · · vn

]
, i.e., the columns of T are eigenvectors of A

then we have Ak = TΛkT−1

thus diagonalization simplifies the expression of a matrix polynomial

p(A) = a0I + a1A+ · · ·+ anA
n

= a0TT
−1 + a1TΛT

−1 + · · ·+ anTΛ
nT−1

= Tp(Λ)T−1

where

p(Λ) =


p(λ1) 0 · · · 0
0 p(λ2) 0
... ... . . . ...
0 0 · · · p(λn)
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Eigenvectors of matrix polynomial

if λ and v be an eigenvalue and corresponding eigenvector of A then
p(λ) is an eigenvalue of p(A)

v is a corresponding eigenvector of p(A)

Av = λv =⇒ A2v = λAv = λ2v · · · =⇒ Akv = λkv

thus
(a0I + a1A+ · · ·+ anA

n)v = (a0v + a1λ+ · · ·+ anλ
n)v

which shows that
p(A)v = p(λ)v
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Matrix exponential

generalize the exponential function of a scalar

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

to an exponential function of a matrix

define matrix exponential as

eA = I +A+
A2

2!
+

A3

3!
+ · · · =

∞∑
k=0

Ak

k!

for a square matrix A

the infinite series converges for all A
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Example
example: A =

[
1 1
0 0

]
find all powers of A

A2 =

[
1 1
0 0

]
, A3 =

[
1 1
0 0

]
, . . . , Ak = A for k = 2, 3, . . .

so by definition,

eA =

∞∑
k=0

Ak

k!
= I +

∞∑
k=1

Ak

k!
=

[
1 0
0 1

]
+

∞∑
k=1

1

k!

[
1 1
0 0

]
=

[
e e− 1
0 1

]

never compute eA by element-wise operation !

eA ̸=
[
e1 e1

e0 e0

]
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Eigenvalues of matrix exponential
, if λ and v be an eigenvalue and corresponding eigenvector of A then

eλ is an eigenvalue of eA

v is a corresponding eigenvector of eA

since eA can be expressed as power series of A:

eA = I +A+
A2

2!
+

A3

3!
+ · · ·

multiplying v on both sides and using Akv = λkv give

eAv = v +Av + A2v
2! + A3v

3! + · · ·

=
(
1 + λ+ λ2

2! +
λ3

3! + · · ·
)
v

= eλv
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Properties of matrix exponential

e0 = I

eA+B ̸= eA · eB

if AB = BA, i.e., A and B commute, then eA+B = eA · eB

(eA)−1 = e−A

, these properties can be proved by the definition of eA
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Computing eA via diagonalization
if A is diagonalizable, i.e.,

T−1AT = Λ = diag(λ1, λ2, . . . , λn)

where λk’s are eigenvalues of A then eA has the form

eA = TeΛT−1

computing eΛ is simple since Λ is diagonal
one needs to find eigenvectors of A to form the matrix T

the expression of eA follows from

eA =

∞∑
k=0

Ak

k!
=

∞∑
k=0

(TΛT−1)k

k!
=

∞∑
k=0

TΛkT−1

k!
= TeΛT−1

if A is diagonalizable, so is eA
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Example

example: compute f(A) = eA given A =

1 1 0
0 2 1
0 0 0


the eigenvalues and eigenvectors of A are

λ1 = 1, v1 =

10
0

 , λ2 = 2, v2 =

11
0

 , λ3 = 0, v3 =

 1
−1
2


form T =

[
v1 v2 v3

]
and compute eA = TeΛT−1

eA =

1 1 1
0 1 −1
0 0 2

e 0 0
0 e2 0
0 0 1

1 −1 −1
0 1 1/2
0 0 1/2

 =

e e2 − e (e2 − 2e+ 1)/2
0 e2 (e2 − 1)/2
0 0 1
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Applications to ordinary differential equations

we solve the following first-order ODEs for t ≥ 0 where x(0) is given

scalar: x(t) ∈ R and a ∈ R is given

ẋ(t) = ax(t)

solution: x(t) = eatx(0), for t ≥ 0

vector: x(t) ∈ Rn and A ∈ Rn×n is given

ẋ(t) = Ax(t)

solution: x(t) = eAtx(0), for t ≥ 0 (use
deAt

dt
= AeAt = eAtA)
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Applications to difference equations

we solve the difference equations for t = 0, 1, . . . where x(0) is given

scalar: x(t) ∈ R and a ∈ R is given

x(t+ 1) = ax(t)

solution: x(t) = atx(0), for t = 0, 1, 2, . . .

vector: x(t) ∈ Rn and A ∈ Rn×n is given

x(t+ 1) = Ax(t)

solution: x(t) = Atx(0), for t = 0, 1, 2, . . .
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Example 1
solve the ODE

ÿ(t)− ẏ(t)− 6y(t) = 0, y(0) = 1, ẏ(0) = 0

solution: define
x(t) ≜

[
x1(t)
x2(t)

]
≜

[
y(t)
ẏ(t)

]
write the equation into the vector form ẋ(t) = Ax(t)

ẋ(t) =

[
ẏ(t)
ÿ(t)

]
=

[
ẏ(t)

ẏ(t) + 6y(t)

]
=

[
x2(t)

6x1(t) + x2(t)

]
=

[
0 1
6 1

]
x(t)

the initial condition is
x(0) =

[
y(0)
ẏ(0)

]
=

[
1
0

]
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Example 1
thus it is left to compute eAt

A =

[
0 1
6 1

]
the eigenvalues and eigenvectors of A are

λ1 = −2, v1 =

[
1
−2

]
, λ2 = 3, v2 =

[
1
3

]
all eigenvalues are distinct, so A is diagonalizable and

eAt = TeΛtT−1, T =
[
v1 v2

]
, Λ =

[
λ1 0
0 λ2

]

eAt =

[
1 1
−2 3

] [
e−2t 0
0 e3t

]
1

5

[
3 −1
2 1

]
Linear algebra and applications Jitkomut Songsiri 158 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example 1
the closed-form expression of eAt is

eAt =
1

5

[
3e−2t + 2e3t −e−2t + e3t

−6e−2t + 6e3t 2e−2t + 3e3t

]
the solution to the vector equation is

x(t) = eAtx(0) =
1

5

[
3e−2t + 2e3t −e−2t + e3t

−6e−2t + 6e3t 2e−2t + 3e3t

] [
1
0

]
=

1

5

[
3e−2t + 2e3t

−6e−2t + 6e3t

]
hence the solution y(t) can be obtained by

y(t) = x1(t) =
[
1 0

]
x(t) =

1

5

(
3e−2t + 2e3t

)
, t ≥ 0
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Example 2
solve the difference equation

y(t+ 2)− y(t+ 1)− 6y(t) = 0, y(0) = 1, y(1) = 0

solution: define
x(t) ≜

[
x1(t)
x2(t)

]
≜

[
y(t)

y(t+ 1)

]
write the equation into the vector form x(t+ 1) = Ax(t)

x(t+ 1) =

[
y(t+ 1)
y(t+ 2)

]
=

[
y(t+ 1)

y(t+ 1) + 6y(t)

]
=

[
x2(t)

6x1(t) + x2(t)

]
=

[
0 1
6 1

]
x(t)

the initial condition is
x(0) =

[
y(0)
y(1)

]
=

[
1
0

]
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Example 2
thus it is left to compute At

A =

[
0 1
6 1

]
the eigenvalues and eigenvectors of A are

λ1 = −2, v1 =

[
1
−2

]
, λ2 = 3, v2 =

[
1
3

]
all eigenvalues are distinct, so A is diagonalizable and

At = TΛtT−1, T =
[
v1 v2

]
, Λ =

[
λ1 0
0 λ2

]

At =

[
1 1
−2 3

] [
(−2)t 0
0 3t

]
1

5

[
3 −1
2 1

]
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Example 2
the closed-form expression of At is

At =
1

5

[
2(3t) + 3(−2)t 3t − (−2)t

2(3t+1) + 3(−2)t+1 3t+1 − (−2)t+1

]
for t = 0, 1, 2, . . .
the solution to the vector equation is

x(t) = Atx(0) =
1

5

[
2(3t) + 3(−2)t 3t − (−2)t

2(3t+1) + 3(−2)t+1 3t+1 − (−2)t+1

] [
1
0

]
=

1

5

[
2(3t) + 3(−2)t

2(3t+1) + 3(−2)t+1

]
hence the solution y(t) can be obtained by

y(t) = x1(t) =
1

5

(
2(3t) + 3(−2)t

)
, t = 0, 1, 2, . . .
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Softwares (MATLAB)

1 [V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix V
whose columns are the corresponding eigenvectors

the eigenvectors are normalized to have a unit 2-norm
eigenvalues are not necessarily sorted by magnitude

2 eigs(A) returns the 6 largest magnitude eigenvalues
3 expm(A) computes the matrix exponential eA

4 exp(A) computes the exponential of the entries in A
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Softwares (Python)

1 D,V = numpy.eig(A) computes the eigenvalues and eigenvectors of A
2 numpy.linalg.matrix_power(A, n) computes the n power of A
3 scipy.linalg.expm(A) computes the matrix exponential of A
4 numpy.exp(A) computes the exponential of the entries of A
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Special matrices and applications
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Special matrices

orthogonal matrix
projection matrix
permutation matrix
symmetric matrix
positive definite matrix
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Orthogonal matrix

a real matrix U ∈ Rn×n is called orthogonal if

UUT = UTU = I

properties: .

an orthogonal matrix is special case of unitary for real matrices
an orthogonal matrix is always invertible and U−1 = UT

columns vectors of U are mutually orthogonal
norm is preserved under an orthogonal transformation: ∥Ux∥22 = ∥x∥22

example:
1√
2

[
1 −1
1 1

]
,

[
cos θ − sin θ
sin θ cos θ

]
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Applications

1 rotation: in R3, rotate a vector x by the angle θ around the z-axis

w =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

xy
z

 ≜ U

xy
z


where U is orthogonal

2 eigenvectors of symmetric matrices are orthogonal (more detail later)
3 Q in QR decomposition is orthogonal
4 orthogonal matrices are used to whiten the data (transform correlated random

vector to uncorrelated random vector)
5 discrete Fourier transform (DFT): y = Wx where W is unitary (equivalence of

orthogonal matrix in complex)
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Unitary matrix

a complex matrix U ∈ Cn×n is called unitary if

U∗U = UU∗ = I, (U∗ ≜ ŪT )

example: let z = e−i2π/3

U =
1√
3

1 1 1
1 z z2

1 z2 z4

 =
1√
3

1 1 1

1 e−i2π/3 e−i4π/3

1 e−i4π/3 e−i8π/3


facts: .

a unitary matrix is always invertible and U−1 = U∗

columns vectors of U are mutually orthogonal
2-norm is preserved under a unitary transformation: ∥Ux∥22 = (Ux)∗(Ux) = ∥x∥22
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Example: Discrete Fourier transform (DFT)
DFT of the length-N time-domain sequence x[n] is defined by

X[k] =
1√
N

N−1∑
n=0

x[n]e−i2πkn/N , 0 ≤ k ≤ N − 1

define z = e−i2π/N , we can write the DFT in a matrix form as
X[0]
X[1]
X[2]

...
X[N − 1]

 =
1√
N


1 1 1 · · · 1
1 z1 z2 · · · zN−1

1 z2 z4 · · · z2(N−1)

... ... ... . . . ...
1 zN−1 z2(N−1) · · · z(N−1)(N−1)




x[0]
x[1]
x[2]

...
x[N − 1]


or X = Dx where D is called the DFT matrix and is unitary (∴ x = D∗X)
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Unitary property of DFT

the columns of DFT matrix are of the form:

ϕk = (1/
√
N)

[
1 e−i2πk/N e−i2πk·2/N · · · e−i2πk(N−1)/N

]T
use ⟨ϕl, ϕk⟩ = ϕ∗

kϕl and apply the sum of geometric series:

⟨ϕl, ϕk⟩ =
1

N

N−1∑
n=0

ei2π(k−l)n/N =
1

N
· 1− ei2π(k−l)

1− ei2π(k−l)/N

the columns of DFT matrix are therefore orthogonal

⟨ϕl, ϕk⟩ =

{
1, for k = l + rN, r = 0, 1, 2, . . .

0, for k ̸= l
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Projection matrix

P ∈ Rn×n is said to be a projection matrix if P 2 = P (aka idempotent)
P is a linear transformation from Rn to a subspace of Rn, denoted as S

columns of P are the projections of standard basis vectors and S is the range of P
if P is applied twice on a vector in S, it gives the same vector

examples: identity and[
1 0
0 0

]
,

[
1/2 1/2
1/2 1/2

]
,

[
3 −6
1 −2

]
, I −X(XTX)−1XT (in regression)

properties: .

eigenvalues of P are all equal to 0 or 1
I − P is also idempotent
if P ̸= I, then P is singular
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Orthogonal projection matrix
a matrix P ∈ Rn×n is called an orthogonal projection matrix if

P 2 = P = P T

properties:
P is bounded, i.e., ∥Px∥ ≤ ∥x∥

∥Px∥22 = xTP TPx = xTP 2x = xTPx ≤ ∥Px∥∥x∥

if P is an orthogonal projection onto a line spanned by a unit vector u,

P = uuT

(we see that rank(P ) = 1 as the dimension of a line is 1)
another example: P = X(XTX)−1XT for any matrix X – (in regression)
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Permutation
a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere0 1 0

1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0


facts: .

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A

P TP = I, so P−1 = P T (simple)
the modulus of all eigenvalues of P is one, i.e., |λi(P )| = 1

a multiplication of P with vectors or matrix has no flop count (just swap
rows/columns)
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Linear function

given w ∈ Rn and let x ∈ Rn be a vector variable

a linear function f : Rn → R is given by

f(x) = wTx = w1x1 + w2x2 + · · ·+ wnxn

(. review its linear properties, i.e., superposition)

an affine function is a linear function plus a constant: f(x) = wTx+ b

∂f
∂xi

= wi gives the rate of change of f in xi direction
the set {x | wTx+ b = constant } is a hyperplane in Rn with the normal vector w
linear functions are used in linear regression model and linear classifier
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Energy form
given a (real) square matrix A, an energy form is a quadratic function of vector x:

f : Rn → R, f(x) = xTAx =
∑
i

∑
j

aijxixj

xTAx is the same as the energy form using (A+AT )/2 as the coefficient because

xTAx = (xTAx)T =
xT (A+AT )x

2

using A = A+AT

2 + A−AT

2 , we can later on assume that an energy form requires
only the symmetric part of A
reverse question: given an energy form, can you determine what A is ?

x21 + 2x22 + 3x23 − x1x2 + 2x2x3 ≜ xTAx
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Energy form and completing the square

recall how to complete the square:

x21 + 3x22 + 14x1x2 = (x1 + 7x2)
2 − 46x22

given these matrices, expand the energy form and complete the square

A =

[
4 6
6 13

]
, B =

[
4 6
6 9

]
, C =

[
4 6
6 −4

]

xTAx =

xTBx =

xTCx =
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Quadratic function

given P ∈ Rn×n, q ∈ Rn, r ∈ R, a quadratic function f : Rn → R is of the form

f(x) = (1/2)xTPx+ qTx+ r

xTPx is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)

electrical power = i2R, kinetic energy = 1

2
mv2, energy stored in spring = 1

2
kx2

the contour shape of f depends on the property of P (positive definite, indefinite,
magnitude of eigenvalues, direction of eigenvectors) – as we will learn shortly
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Symmetric matrix

definition: a (real) square matrix A is said to be symmetric if A = AT

notation: A ∈ Sn

examples:[
X Y
Y T Z

]
with symmetric X,Z, A = E[XXT ] (correlation matrix)

. basic facts:
for any (rectangular) matrix A, AAT and ATA are always symmetric
if A is symmetric and invertible, then A−1 is symmetric
if A is invertible, then AAT and ATA are also invertible
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Properties of symmetric matrix

spectral theorem: if A is a real symmetric matrix then the following statements hold
1 all eigenvalues of A are real
2 all eigenvectors of A are orthogonal
3 A admits a decomposition

A = UDUT

where UTU = UUT = I (U is unitary) and a diagonal D contains λ(A)

4 for any x, we have

λmin(A)∥x∥22 ≤ xTAx ≤ λmax(A)∥x∥22

the first (and second) inequalities are tight when x is the eigenvector corresponding to λmin

(and λmax respectively)
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Proofs

1 assume Ax = λx and λ, x could be complex, denote x∗ = x̄T

(x∗Ax)∗ = x∗A∗x = x∗Ax = x∗λx = λx∗x

= (x∗λx)∗ = λ̄x∗x

since x∗x ̸= 0, we must have λ = λ̄

2 assume Ax1 = λ1x1 and Ax2 = λ2x2 (now all (λi, xi) are real)

xT2 Ax1 = xT2 λ1x1 = λ1x
T
2 x1

= xT1 Ax2 = xT1 λ2x2 = λ2x
T
1 x2

equating two terms give (λ1 − λ2)x
T
2 x1 = 0

for simple case, we can assume that λi’s are distinct, so xT2 x1 = 0 (x2 ⊥ x1)

Linear algebra and applications Jitkomut Songsiri 182 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises

1 for x, y ∈ Rn, are xyT , xxT , yxT symmetric?
2 for a diagonal matrix D, is D + xxT symmetric?
3 if A,B are symmetric, so is A+B?
4 how many distinct entries in a symmetric matrix of size n?
5 if A is symmetric and B is rectangular, is BABT symmetric?
6 if A is symmetric and invertible, is A−1 symmetric?

7 find conditions on A,B,C,D so that the block matrix:
[
A B
C D

]
is symmetric
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Positive definite matrix
definition: a symmetric matrix A is positive semidefinite, written as A ⪰ 0 if

xTAx ≥ 0, ∀x ∈ Rn

and is said to be positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

k the curly ⪰ symbol is used with matrices (to differentiate it from ≥ for scalars )

example: A1 =

[
1 −1
−1 1

]
⪰ 0 and A2 =

[
1 −1
−1 2

]
≻ 0 because

xTA1x =
[
x1 x2

] [ 1 −1
−1 1

] [
x1
x2

]
= x21 + x22 − 2x1x2 = (x1 − x2)

2 ≥ 0

xTA2x = (x1 − x2)
2 + x22 > 0, ∀x ̸= 0

exercise: . check positive semidefiniteness of matrices on page 178
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How to test if A ⪰ 0?

Theorem: A ⪰ 0 if and only if all eigenvalues of A are non-negative
(A ≻ 0 if and only if λ(A) > 0)
Sylvester’s criterion: if every principal minor of A (including detA) is non-negative
then A ⪰ 0 proof in Horn Theorem 7.2.5

example 1: A =

[
1 −1
−1 2

]
≻ 0 because

eigenvalues of A are 0.38 and 2.61 (real and positive)

the principle minors are 1 and
∣∣∣∣ 1 −1
−1 2

∣∣∣∣ = 1 (all positive)

example 2: A =

[
1 1
2 2

]
⪰ 0 because eigenvalues of A are 0 and 3
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Properties of positive definite matrix

1 if A ⪰ 0 then all the diagonal terms of A are nonnegative
2 if A ⪰ 0 then all the leading blocks of A are positive semidefinite
3 if A ⪰ 0 then BABT ⪰ 0 for any B - (exercise)
4 if A ⪰ 0 and B ⪰ 0, then so is A+B
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Gram matrix
for an m× n matrix A with columns a1, . . . , an, the product G = ATA is called the
Gram matrix Gram matrix is positive semidefinite

Jørgen Pedersen Gram

G = ATA =


aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an

... ... . . . ...
aTna1 aTna2 · · · aTnan


xTGx = xTATAx = ∥Ax∥2 ≥ 0, ∀x

if A has zero nullspace then Ax = 0 ↔ x = 0; this implies that ATA ≻ 0

let X be a data matrix, partitioned in N rows as xTk ’s; we typically encounter
G = XTX

N = 1
N

∑N
k=1 xkx

T
k as the sample covariance matrix
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Exercises
1 check if each of the following is positive definite

A1 =

[
2 4
4 1

]
, A2 =

[
−2 1
1 3

]
, A3 =

 4 −1 0
−1 2 2
0 2 3


2 is a diagonal matrix always positive semidefinite?
3 for x ∈ Rn and I is the identify

1 is I + xxT positive semidefinite?
2 is I − xxT positive semidefinite?
3 is xxT positive semidefinite?

4 find conditions on a, b, c so that 2 a b
a 1 −1
b −1 c


is positive definite
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Numerical exercises

generate each of these matrices randomly and check its properties

1 orthogonal: check determinant and eigenvalues
2 orthogonal projection: check eigenvalues
3 permutation: check the eigenvalues, its inverse and transpose
4 symmetric: check eigenvalues and eigenvectors
5 positive definite: check eigenvalues, eigenvalues of leading diagonal blocks,

relate what you numerically found to the properties of these matrices
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Matrix decomposition
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Decompositions

LU
Cholesky
SVD
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices

A = A1A2 · · ·Ak

then solve (A1A2 · · ·Ak)x = b by solving k equations

A1z1 = b, A2z2 = z1, . . . , Ak−1zk−1 = zk−2, Akx = zk−1

complexity of factor-solve method: flops = f + s

f is cost of factoring A as A = A1A2 · · ·Ak (factorization step)
s is cost of solving the k equations for z1, z2, …zk−1, x (solve step)
usually f ≫ s
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Forward substitution
solve Ax = b when A is lower triangular with nonzero diagonal elements

a11 0 · · · 0
a21 a22 · · · 0
... ... . . . ...

an1 an2 · · · ann




x1
x2
...
xn

 =


b1
b2
...
bn


algorithm:

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

cost: 1 + 3 + 5 + · · ·+ (2n− 1) = n2 flops
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LU decomposition (w/o row pivoting)

Theorem: if A can be lower reduced (w/o row interchanged) to a row-echelon matrix
U , then A = LU where L is lower triangular and invertible and U is upper triangular
and row-echelon

suppose A can be reduced to A → E1A → E2E1A → EkEk−1 · · ·E2E1A = U

A = LU where L = E−1
1 E−1

2 · · ·E−1
k

Ej corresponds to scaling operation or Ri + αRj → Ri for i > j
Ej is lower triangular (and invertible)
E−1

j is also lower triangular, hence, L is lower triangular
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Example

find LU for A =

 2 4 2
1 1 2
−1 0 2


R1/2, E1 =

1/2 0 0
0 1 0
0 0 1

 , E−1
1 =

2 0 0
0 1 0
0 0 1

 , ⇒

 1 2 1
1 1 2
−1 0 2


R2 − R1 → R2, E2 =

 1 0 0
−1 1 0
0 0 1

 , E−1
2 =

1 0 0
1 1 0
0 0 1

 , ⇒

 1 2 1
0 −1 1
−1 0 2


R3 + R1 → R3, E3 =

1 0 0
0 1 0
1 0 1

 , E−1
3 =

 1 0 0
0 1 0
−1 0 1

 , ⇒

1 2 1
0 −1 1
0 2 3


R2/ − 1 → R2, E4 =

1 0 0
0 −1 0
0 0 1

 , E−1
4 =

1 0 0
0 −1 0
0 0 1

 , ⇒

1 2 1
0 1 −1
0 2 3


R3 − 2R2 → R3, E5 =

1 0 0
0 1 0
0 −2 1

 , E−1
5 =

1 0 0
0 1 0
0 2 1

 , ⇒

1 2 1
0 1 −1
0 0 5

 = U

we have A = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 U =

 2 0 0
1 −1 0
−1 2 1

1 2 1
0 1 −1
0 0 5


each column in L can be read from the leading column in A while performing Gaussian elimination
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LU algorithm

let A ∈ Rm×n of rank r and suppose A can be lower reduced to U (without row
interchanged) then A = LU where the lower triangular, invertible L is constructed as
follows

1 if A = 0 then L = Im and U = 0

2 if A ̸= 0, write A1 = A and let c1 be the leading column of A1

3 use c1 to create the first leading 1 and create zero below it; denote A2 the matrix
consisting of rows 2 to m

4 if A2 ̸= 0 let c2 be the leading column of A2 and repeat step 2-3 to create A3

5 continue until U is found where all rows below the last leading 1 consist of zeros;
this happen after r steps

6 create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im
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Example

find LU for A =

 2 6 −2 0 2
3 9 −3 3 1
−1 3 1 −3 1



R1/2

 1 3 −1 0 1
3 9 −3 3 1
−1 3 1 −3 1

 , R2 − 3R1 → R2, R3 +R1 → R3

1 3 −1 0 1
0 0 0 3 −2
0 0 0 −3 2


R2/3

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 −3 2

 , R3 + 3R2 → R3

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0

 = U

we obtain

A =

 2 0 0
3 3 0
−1 −3 1

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0
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Is LU decomposition unique?
from the previous page

A =

 2 6 −2 0 2
3 9 −3 3 1
−1 3 1 −3 1

 =

 2 0 0
3 3 0
−1 −3 1

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0

 = L1U1

we can make L the unit lower triangular (all diagonals are 1) (standard choice)

A =

 2 0 0
3 3 0
−1 −3 1

1/2 0 0
0 1/3 0
0 0 1

2 0 0
0 3 0
0 0 1

1 3 −1 0 1
0 0 0 1 −2/3
0 0 0 0 0


=

 1 0 0
3/2 1 0
−1/2 −1 1

3 9 −3 0 3
0 0 0 3 −2
0 0 0 0 0

 = L2U2
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

A =

[
0 1
1 0

]
⇒ LU =

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
from this example,

if A could be factored as LU, it would require that l11u11 = a11 = 0

one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Existence and uniqueness

existence
Theorem: suppose A is invertible; then A has LU factorization A = LU if and
only if all leading principle minors are nonzero[

0 1
1 0

]
is non-singular but has no LU factorization

uniqueness
Theorem: if an invertible A has an LU factorization then L and U are uniquely
determined (if we require the diagonals of L (or U) are all 1)

(Horn, Corollary 3.5.6)

Linear algebra and applications Jitkomut Songsiri 201 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LU decomposition with row pivoting

find LU of A =

 0 0 −1
−1 −1 1
2 1 −2


the first row has a leading zero, so row operations require a row interchange, here

choose R1 ⇔ R3 corresponding to P =

0 0 1
0 1 0
1 0 0


note that P 2 = I (permutation property), we can write

A = P 2A = PPA = P

 2 1 −2
−1 −1 1
0 0 −1


perform LU decomposition on the resulting PA
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LU decomposition with row pivoting

perform R1/2, R2 + 2R1 → R1

A = P

 2
−1 1
0 0 1

1 1/2 −3/2
0 −1/2 −1/2
0 0 −1


perform R2 ×−2 → R2

A = P

 2
−1 −1/2
0 0 1

1 1/2 −3/2
0 1 1
0 0 −1


perform R3 ×−1 → R3

A =

0 0 1
0 1 0
1 0 0

 2

−1 − 1
2

0 0 −1

1 1
2

− 3
2

0 1 1
0 0 1

 =

0 0 1
0 1 0
1 0 0

 1

− 1
2

1
0 0 1

2 1 −3

0 − 1
2

− 1
2

0 0 −1

 ≜ PLU
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LU decomposition with row pivoting

same A on page 202 but swap R1 ⇔ R2 using P =

0 1 0
1 0 0
0 0 1



perform LU decomposition and we get different factors

A =

 0 0 −1
−1 −1 1
2 1 −2

 =

0 1 0
1 0 0
0 0 1

 1 0 0
1/2 1 0
0 −1 1

2 0 3
0 1 1/2
0 0 9/2
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Common pivoting strategy

permute rows so that the largest entry of the first column is on the top left

A =

 2 4 2
1 1 2
−1 0 2

 =

 2 0 0
1 1 0
−1 0 1

1 2 1
0 −1 1
0 2 3

 R1/2 → R1
R2 − R1 → R2
R3 + R1 → R3

= P1P1

 2 0 0
1 1 0
−1 0 1

P1P1

1 2 1
0 −1 1
0 2 3

 (swap row 2 and 3), P1 =

1 0 0
0 0 1
0 1 0

 ∵ P
2
1 = I

= P1

P1

 2 0 0
1 1 0
−1 0 1

P1

1 2 1
0 2 3
0 −1 1

 = P1

 2 0 0
−1 1 0
1 0 1

1 2 1
0 2 3
0 −1 1


= P1

 2 0 0
−1 2 0
1 −1 1

1 2 1
0 1 3/2
0 0 5/2

 R2/2 → R2
R3 + R2 → R3

=

1 0 0
0 0 1
0 1 0

 1 0 0
−1/2 1 0
1/2 −1/2 1

2 4 2
0 2 3
0 0 5/2
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Conclusion

any square matrix A can be factorized as (with row pivoting)

A = PLU

factorization:
P permutation matrix, L unit lower triangular, U upper triangular
factorization cost: (2/3)n3 if A has order n
not unique; there may be several possible choices for P , L, U
interpretation: permute the rows of A and factor P TA as P TA = LU

also known as Gaussian elimination with partial pivoting (GEPP)
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Example

a singular A (no row pivoting)

A =

[
4 2
2 1

]
=

[
1 0
1/2 1

] [
4 2
0 0

]
nonsingular A (that requires row pivoting)

A =

[
0 2
1 0

]
=

[
0 1
1 0

] [
1 0
0 1

] [
1 0
0 2

]
nonsingular A (showing two choices of (P,L, U))

A =

 2 4 2
1 1 2
−1 0 2

 =

 1 0 0
1/2 1 0
−1/2 −2 1

2 4 2
0 −1 1
0 0 5

 , A =

1 0 0
0 0 1
0 1 0

 1 0 0
−1/2 1 0
1/2 −1/2 1

2 4 2
0 2 3
0 0 5/2
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Solving a linear system with LU factor

solving linear system: (PLU)x = b in three steps
permutation: z1 = P T b (0 flops)
forward substitution: solve Lz2 = z1 (n2 flops)
back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3
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Softwares

MATLAB
[L,U,P] = lu(A) find LU decomposition: A = P TLU where L is unit lower
triangular and U is upper triangular

Python
P,L,U = scipy.linalg.lu(A) find LU decomposition: A = PLU where L is
unit lower triangular and U is upper triangular
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Exercises

1 find LU factorization (explain if row pivoting is required) and compare the results
with coding

A1 =

 2 4 2
1 −1 3
−1 7 −7

 , A2 =

 0 −1 2
0 0 3
−1 2 2

 , A3 =

 3 3 0
−2 0 2
3 2 −1


2 suppose we aim to solve Ax = b(k) for k = 1, . . . , 1000 where A ∈ R2000×2000 and

b(k)’s can be randomized as examples, write computer code to solve the linear
system using factor approach and measure the computation time in each process
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

cost: (1/3)n3 flops if A is of order n
L is called the Cholesky factor of A
can be interpreted as ‘square root’ of a positive define matrix
L is invertible (its diagonal elements are nonzero)
A is invertible and

A−1 = L−TL−1
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Cholesky factorization algorithm

partition matrices in A = LLT as[
a11 AT

21

A21 A22

]
=

[
l11 0
L21 L22

] [
l11 LT

21

0 LT
22

]
=

[
l211 l11L

T
21

l11L21 L21L
T
21 + L22L

T
22

]
algorithm:

1 determine l11 and L21:

l11 =
√
a11, L21 =

1

l11
A21

2 compute L22 from
A22 − L21L

T
21 = L22L

T
22

this is a Cholesky factorization of order n− 1
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Proof of Cholesky algorithm

proof that the algorithm works for positive definite A of order n
step 1: if A is positive definite then a11 > 0

step 2: if A is positive definite, then

A22 − L21L
T
21 = A22 −

1

a11
A21A

T
21

is positive definite (by Schur complement)
hence the algorithm works for n = m if it works for n = m− 1

it obviously works for n = 1; therefore it works for all n
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Example of Cholesky algorithm

 25 15 −5
15 18 0
−5 0 11

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31
0 l22 l32
0 0 l33



first column of L  25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 l22 0

−1 l32 l33

 5 3 −1
0 l22 l32
0 0 l33


second column of L [

18 0
0 11

]
−

[
3

−1

] [
3 −1

]
=

[
l22 0
l32 l33

] [
l22 l32
0 l33

]
[

9 3
3 10

]
=

[
3 0
1 l33

] [
3 1
0 l33

]
third column of L: 10 − 1 = l233, i.e., l33 = 3

conclusion:  25 15 −5
15 18 0
−5 0 11

 =

 5 0 0
3 3 0

−1 1 3

 5 3 −1
0 3 1
0 0 3
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Solving equations with positive definite A

Ax = b (A positive definite of order n)

algorithm
factor A as A = LLT

solve LLTx = b

forward substitution Lz = b
back substitution LTx = z

cost: (1/3)n3 flops
factorization: (1/3)n3

forward and backward substitution: 2n2
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Softwares

MATLAB
U = chol(A) returns Cholesky decomposition A = UTU where U is upper
triangular

Python
L = scipy.linalg.cholesky(A) returns Cholesky decomposition A = LLT or
A = UTU where L is lower (lower=True) and U is upper triangular
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Exercises

1 find Cholesky factorization and compare the results with coding

A1 =

[
2 1
1 3

]
, A2 =

12 4 3
4 2 −1
3 −1 7

 , A3 =

20 4 5
4 2 3
5 3 5


2 suggest a method to randomize A and guarantee that A ≻ 0

3 suppose we aim to solve Ax = b(k) for k = 1, . . . , 1000 where A ∈ S2000×2000
++

(pdf) and b(k)’s can be randomized as examples, write computer code to solve the
linear system using factor approach and measure the computation time in each
process
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SVD decomposition

recall that ATA ⪰ 0 and eigenvalues are non-negative
singular values
left and right singular vectors
applications: pseudo inverse
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Singular values and vectors
let A ∈ Rm×n, we form eigenvalue problem of ATA

ATAvi = σ2
i vi, i = 1, 2, . . . , n

σi =
√
λi(ATA) > 0 is called singular value of A

vi (orthogonal and has unit-norm) is called right singular vector
fact: if rank of A is r then σ1 ≥ σ2 ≥ · · ·σr > 0 and σi = 0 for i > r

rank of A is the number of non-zero singular values of A

there exist left singular vector u1, u2, . . . , um that are orthogonal such that

Av1 = σ1u1, Av2 = σ2u2, . . . , Avr = σrur, Avr+1 = · · · = Avn = 0
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Matrix form

Av1 = σ1u1, Av2 = σ2u2, . . . , Avr = σrur, Avr+1 = · · · = Avn = 0

or in matrix form: AV = UΣ (where U and V are orthogonal matrices)

A [ v1 · · · vr vr+1 · · · vn ] = [ u1 · · · ur ur+1 · · · um ]


σ1 0

. . . 0
σr 0

0 0 0 0


it can be shown that

v1, . . . , vr, vr+1, . . . , vn are orthogonal (eigenvectors of ATA, which is symmetric)
ur+1, . . . , um can be chosen such that {u1, . . . , um} are orgothogonal
hence, V, U are orthogonal matrices, V TV = I, UTU = I

unlike eigenvalue decomposition: AX = XΛ, SVD needs two sets of singular vectors
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SVD decomposition
let A ∈ Rm×n be a rectangular matrix; there exists the SVD form of A

squaretall fat

U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices
Σ ∈ Rm×n with Σii = σi ≥ 0 and Σij = 0 for i ̸= j

for a rectangular A, Σ has a diagonal submatrix Σ1 with dimension of min(m,n)

Atall = [ U1 U2 ]
[

Σ1
0

]
V T = U1Σ1V

T , Afat = U [ Σ1 0 ]
[

V T
1

V T
2

]
= UΣ1V

T
1
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Square A

[
2 1
−1 −2

]
=

1√
2

[
−1 1
1 1

] [
3 0
0 1

]
1√
2

[
−1 1
−1 −1

]T

, rank(A) = 2 2 4 −2
−2 0 −2
2 1 1

 =

−0.94 −0.27 −0.20
0.11 −0.80 0.59
−0.31 0.53 0.78

5.10 0 0
0 3.46 0
0 0 0

−0.53 0.62 0.58
−0.80 −0.15 −0.58
0.27 0.77 −0.58

T

, rank(A) = 2

−2 1 3
4 −2 −6
2 −1 −3

 =

−0.41 −0.91 0
0.82 −0.37 −0.45
0.41 −0.18 0.89

9.17 0 9
0 0 0
0 0 0

 0.53 −0.85 0
−0.27 −0.17 0.95
−0.80 −0.51 −0.32

T

, rank(A) = 1

check the singular values and eigenvalues of ATA

confirm the rank and the number of nonzero singular values
if A is invertible, so is Σ
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Fat A

A1 =

[
2 0 2
0 −2 1

]
=

[
−0.89 −0.45
−0.45 0.89

] [
3 0 0
0 2 0

]−0.60 −0.45 −0.67
0.30 −0.89 0.33
−0.75 0 0.67

T

, rank(A) = 2

A2 =

 2 −1 1 0
2 0 1 −2
−2 0 −1 2



=

 0.42 0.91 0
0.64 −0.30 0.71
−0.64 0.30 0.71

4.6100 0 0 0
0 1.65 0 0
0 0 0 0




0.74 0.38 0.40 −0.38
−0.09 −0.55 0.82 0.14
0.37 0.19 0.01 0.91
−0.56 0.72 0.41 0.07


T

, rank(A) = 1

A2 is low rank, the SVD form can be reduced to A2 = UΣV T = UrΣrV
T
r where

Ur, Vr have the first r columns of U and V respectively and Σr is the leading
r-diagonal block of Σ (r = rank(A))
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Tall A


0 0 0
0 −1 1
−2 −2 0
0 1 −1

 =


0 0 0 −1.00

0.33 −0.63 −0.71 0
0.89 0.46 0 0
−0.33 0.63 −0.71 0



3.080 0 0
0 1.59 0
0 0 0
0 0 0


−0.58 −0.58 0.58
−0.79 0.21 −0.58
0.21 −0.79 −0.58

T

rank(A) = 2 and there are two nonzero singular values
A can be reduced to

A = UΣV T = UrΣrV
T
r , r = rank(A) = 2
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Softwares

MATLAB
[U,S,V] = svd(A) returns SVD decomposition: A = USV T

Python
U,S,Vt = scipy.linalg.svd(A)
U,S,Vt = numpy.linalg.svd(A)

returns SVD decomposition: A = USV T where S is returned as a vector of
singular values and Vt as V T
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Pseudo-inverse (Penrose Theorem)

one can have a notion of ’inverse’ for a non-square matrix

Penrose’s Theorem: given A ∈ Rm×n, there is exactly one n×m matrix B such that
1 ABA = A and BAB = B

2 both AB and BA are symmetric

definition: the pseudo inverse of A ∈ Rm×n is the unique n×m matrix A† such that
1 AA†A = A and A†AA† = A†

2 both AA† and A†A are symmetric
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Pseudo-inverse
consider a full rank matrix A ∈ Rm×n in three cases

tall matrix: A is full rank ⇔ columns of A are LI ⇔ ATA is invertible

((ATA)−1AT )A = (ATA)−1(ATA) = I

the pseudo-inverse of A (or left-inverse) is A† = (ATA)−1AT

wide matrix: A is full rank ⇔ row of A are LI ⇔ AAT is invertible

A(AT (AAT )−1) = (AAT )(AAT )−1 = I

the pseudo-inverse of A (or right-inverse) is A† = AT (AAT )−1

square matrix: A is full rank ⇔ A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A−1

. the pseudo inverses of the three cases have the same dimension ?
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Example

A =

[
0 2 1
−2 1 −2

]
, A† = AT (AAT )−1 =

 0 −2/9
2/5 1/9
1/5 −2/9


A =

−2 −1
2 −1
−1 0

 , A† = (ATA)−1AT =

[
−2/9 2/9 1/9
−1/2 −1/2 0

]

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse
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Pseudo-inverse via SVD

the pseudo-inverse A† can be computed from any SVD for A ∈ Rn×m

from A = Un×nΣn×mV T
m×m if A has rank r then

Σ =

[
Σr 0
0 0

]
m×n

, and that Σr is invertible

define Σ† =

[
Σ−1
r 0
0 0

]
n×m

and we can verify that

ΣΣ†Σ = Σ, Σ†ΣΣ† = Σ†, ΣΣ† =

[
Ir 0
0 0

]
m×m

, Σ†Σ =

[
Ir 0
0 0

]
n×n

proving that Σ† is the pseudoinverse of Σ
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Pseudo-inverse via SVD

given A = UΣV T , then the pseudo-inverse of A is

A† = V Σ†UT

by verifying Penrose’s Theorem from page 226 that

AA†A = (UΣV T )(V Σ†UT )(UΣV T ) = UΣΣ†ΣV T = UΣV T = A

A†AA† = (V Σ†UT )(UΣV T )(V Σ†UT ) = V Σ†ΣΣ†UT = V Σ†UT = A†

AA† = UΣΣ†UT which is symmetric
A†A = V Σ†ΣV T which is symmetric
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Example

a tall full rank A

A =

−2 −1
2 −1
−1 0

 =

−0.6667 −0.7071 −0.2357
0.6667 −0.7071 0.2357
−0.3333 −0.0000 0.9428

3 0
0 1.4142
0 0

[
1 0
0 1

]T

A† = V Σ†UT = V

[
0.3333 0 0

0 0.7071 0

]
UT

=

[
−0.22 0.22 −0.1100
−0.50 −0.50 0

]
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Example

a fat low rank A

A =

−2 −1 −3 0
0 −3 −3 −2
2 −2 0 −2

 =

0.47 0.67 −0.58
0.81 −0.08 0.58
0.34 −0.74 −0.58

5.76 0 0 0
0 3.85 0 0
0 0 0 0



−0.05 −0.73 0.51 −0.45
−0.62 0.27 −0.27 −0.68
−0.67 −0.46 −0.25 0.53
−0.40 0.43 0.78 0.23


T

A
†
= V Σ

†
U

T
= V


0.1736 0 0

0 0.2596 0
0 0 0
0 0 0

U
T

=


−0.13 0.01 0.14

0 −0.09 −0.09
−0.13 −0.09 0.05
0.04 −0.07 −0.11



rank(A) = 2 < n and there are two non-zero singular values
Σ ∈ R3×4 and Σ† ∈ R4×3 with 2× 2 invertible block
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Applications of pseudo-inverse

least-square problem: find a straight line that fit best in 2-norm sense to data
points
least-norm problem: find a point x on the given hyperplane that has the
smallest norm
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Least-square problem

given X ∈ RN×p, y ∈ RN where typically N > p, a least-square problem is

minimize
β

∥y −Xβ∥22

it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual
if X is full rank, and from zero-gradient condition, the optimal solution is

β = (XTX)−1XT y

the solution is linear in y where the coefficient is the left inverse of X

Linear algebra and applications Jitkomut Songsiri 234 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Least-norm problem

given A ∈ Rm×n, b ∈ Rm where m < n and A is full rank, the least-norm problem is

minimize
x

∥x∥2 subject to Ax = y

find a point on hyperplane Ax = b while keeping the 2-norm of x smallest
it extends from solving an under-determined system that has many solutions and
we aim to find the solution with smallest norm
it can be shown that the optimal solution is

x⋆ = AT (AAT )−1y, provided that A is full row rank

the solution is linear in y where the coefficient is the right inverse of A
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Outline

definition
linear independence
basis and dimension
coordinate and change of basis
range space and null space
rank and nullity
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Elements of vector space

a vector space or linear space (over R) consists of
a set V
a vector sum + : V × V → V
a scalar multiplication : R × V → V
a distinguished element 0 ∈ V

which satisfy a list of properties
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properties under addition
x+ y ∈ V ∀x, y ∈ V (closed under addition)
x+ y = y + x, ∀x, y ∈ V (+ is commutative)
(x+ y) + z = x+ (y + z), ∀x, y, z ∈ V (+ is associative)
0 + x = x, ∀x ∈ V (0 is additive identity)
∀x ∈ V ∃(−x) ∈ V s.t. x+ (−x) = 0 (existence of additive inverse)

properties under scalar multiplication
αx ∈ V for any α ∈ R (closed under scalar multiplication)
(αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V (scalar multiplication is associative)
α(x+ y) = αx+ αy, ∀α ∈ R ∀x, y ∈ V (right distributive rule)
(α+ β)x = αx+ αy, ∀α, β ∈ R ∀x ∈ V (left distributive rule)
1x = x, ∀x ∈ V (1 is multiplicative identity)
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notation
(V,R) denotes a vector space V over R
an element in V is called a vector

Theorem: let u be a vector in V and k a scalar; then
0u = 0 (multiplication with zero gives the zero vector)
k0 = 0 (multiplication with the zero vector gives the zero vector)
(−1)u = −u (multiplication with −1 gives the additive inverse)
if ku = 0, then k = 0 or u = 0
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roughly speaking, a vector space must satisfy the following operations
1 vector addition

x, y ∈ V ⇒ x+ y ∈ V

2 scalar multiplication

for any α ∈ R, x ∈ V ⇒ αx ∈ V

the second condition implies that a vector space contains the zero vector

0 ∈ V

in other words, if V is a vector space then 0 ∈ V

(but the converse is not true)
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Examples
the following sets are vector spaces (over R)

Rn

{0}
Rm×n

Cm×n: set of m× n-complex matrices
Pn: set of polynomials of degree ≤ n

Pn = {p(t) | p(t) = a0 + a1t+ · · ·+ ant
n}

Sn: set of symmetric matrices of size n

C(−∞,∞): set of real-valued continuous functions on (−∞,∞)

Cn(−∞,∞): set of real-valued functions with continuous nth derivatives on
(−∞,∞)
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. check whether any of the following sets is a vector space (over R)
{0, 1, 2, 3, . . .}{[

1
2

]
,

[
−1
0

]
,

[
0
0

]}
{
x ∈ R2 | x =

[
x1
0

]
, x1 ∈ R

}
{
p(x) ∈ P2 | p(x) = a1x+ a2x

2 for some a1, a2 ∈ R
}
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Subspace

a subspace of a vector space is a subset of a vector space which is itself a vector
space
a subspace is closed under vector addition and scalar multiplication

examples:
{0} is a subspace of Rn

Rm×n is a subspace of Cm×n{
x ∈ R2 | x1 = 0

}
is a subspace of R2{

x ∈ R2 | x2 = 1
}

is not a subspace of R2{[
1 4
−3 2

]
,

[
0 0
0 0

]}
is not a subspace of R2×2

the solution set {x ∈ Rn | Ax = b} for b ̸= 0 is a not subspace of Rn
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Examples of subspace
two hyperplanes; one is a subspace but the other one is not

2x1 − 3x2 + x3 = 0 (yellow), 2x1 − 3x2 + x3 = 20 (grey)

black = red + blue

x = (−3,−2, 0) and y = (1,−1,−5) are on the yellow plane, and so is x+ y

x = (−3,−2, 20) and y = (1,−1, 15) are on the grey plane, but x+ y is not
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Linear Independence

Definition: a set of vectors {v1, v2, . . . , vn} is linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 =⇒ α1 = α2 = · · · = αn = 0

equivalent conditions:
coefficients of α1v1 + α2v2 + · · ·+ αnvn are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn

implies αk = βk for k = 1, 2, . . . , n

no vector vi can be expressed as a linear combination of the other vectors
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Examples
12
1

 ,

31
0

 are independent

12
1

 ,

31
0

 ,

−1
0
1

 are independent

12
1

 ,

31
0

 ,

−1
0
1

 ,

42
0

 are not independent

12
1

 ,

31
0

 ,

 2
−1
−1

 are not independent
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Linear span

Definition: the linear span of a set of vectors

{v1, v2, . . . , vn}

is the set of all linear combinations of v1, . . . , vn

span{v1, v2, . . . , vn} = {a1v1 + a2v2 + · · ·+ anvn | a1, . . . , an ∈ R}

example:

span
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is the set of 2× 2 symmetric matrices

Fact: if v1, . . . , vn are vectors in V, span{v1, . . . , vn} is a subspace of V
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Basis and dimension

definition: set of vectors {v1, v2, · · · , vn} is a basis for a vector space V if
{v1, v2, . . . , vn} is linearly independent
V = span {v1, v2, . . . , vn}

equivalent condition: every v ∈ V can be uniquely expressed as

v = α1v1 + · · ·+ αnvn

definition: the dimension of V, denoted dim(V), is the number of vectors in a basis
for V

Theorem: the number of vectors in any basis for V is the same

(we assign dim{0} = 0 )
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Examples

{e1, e2, e3} is a standard basis for R3 (dimR3 = 3){[
−1
3

]
,

[
0
2

]}
is a basis for R2 (dimR2 = 2)

{1, t, t2} is a basis for P2 (dimP2 = 3){[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis for R2×2 (dimR2×2 = 4)

11
1

 cannot be a basis for R3 why ?

{[
1
1

]
,

[
1
0

]
,

[
−2
3

]}
cannot be a basis for R2 why ?
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Example

let V = {p ∈ P2 | p(2) = 0 } find a basis for V
. verify that V is a subspace for P2

characterize the space V

p(t) = a0 + a1t+ a2t
2, p(2) = a0 + 2a1 + 4a2 = 0

therefore, any p(t) ∈ V takes the form

p(t) = −2a1 − 4a2 + a1t+ a2t
2 = a1(t− 2) + a2(t

2 − 4), a1, a2 ∈ R

we have shown that p(t) ∈ span{t− 2, t2 − 4}
we can verify that {t− 2, t2 − 4} is LI
therefore {t− 2, t2 − 4} is a basis for V and dim({t− 2, t2 − 4}) = 2
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Standard basis for S3

any A ∈ S3 can be expressed as

A =

a11 a12 a13
a12 a22 a23
a13 a23 a33

 = a11

1 0 0
0 0 0
0 0 0

+ a12

0 1 0
1 0 0
0 0 0

+ a13

0 0 1
0 0 0
1 0 0


+ a23

0 0 0
0 0 1
0 1 0

+ a33

0 0 0
0 0 0
0 0 1


≜ a11E11 + a12E12 + a13E13 + a23E23 + a33E33

we have shown that A ∈ span{E11, E12, E13, E23, E33}
verify that {E11, E12, E13, E23, E33} is LI
hence, {E11, E12, E13, E23, E33} is a basis for S3 and dim(S3) = 5
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Review questions

. answer the questions and explain a reason
1 find the standard basis for Sn

2 can {E11, E12, E13, E21, E22, E23, E31, E32, E33} be a basis for S3?
3 can {E11, E12, E13, E23, E33} be a basis for R3×3?
4 let V = { x ∈ Rn |

∑
i xi = 0 }

can {e1, e2, . . . , en} (standard basis) be a basis for V?
is it possible to find two different bases for V?
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Coordinates

let S = {v1, v2, . . . , vn} be a basis for a vector space V

suppose a vector v ∈ V can be written as

v = a1v1 + a2v2 + · · ·+ anvn

definition: the coordinate vector of v relative to the basis S is

[v]S = (a1, a2, . . . , an)

linear independence of vectors in S ensures that ak’s are uniquely determined by
S and v

changing the basis yields a different coordinate vector
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Geometrical interpretation
new coordinate in a new reference axis

v =

[
1
3

]
= 1

[
1
0

]
+ 3

[
0
1

]
= 2

[
1
1

]
+ 1

[
−1
1

]
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Examples
S = {e1, e2, e3}, v = (−2, 4, 1)

v = −2e1 + 4e2 + 1e3, [v]S = (−2, 4, 1)

S = {(−1, 2, 0), (3, 0, 0), (−2, 1, 1)}, v = (−2, 4, 1)

v =

−2
4
1

 =
3

2

−1
2
0

+
1

2

30
0

+ 1

−2
1
1

 , [v]S = (3/2, 1/2, 1)

S = {1, t, t2}, v(t) = −3 + 2t+ 4t2

v(t) = −3 · 1 + 2 · t+ 4 · t2, [v]S = (−3, 2, 4)

S = {1, t− 1, t2 + t}, v(t) = −3 + 2t+ 4t2

v(t) = −5 · 1− 2 · (t− 1) + 4 · (t2 + t), [v]S = (−5,−2, 4)
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Change of basis
let U = {u1, . . . , un} and W = {w1, . . . , wn} be bases for a vector space V
a vector v ∈ V has the coordinates relative to these bases as

[v]U = (a1, a2, . . . , an), [v]W = (b1, b2, . . . , bn)

suppose the coordinate vectors of wk relative to U is

[wk]U = (c1k, c2k, . . . , cnk)

or in the matrix form as

[
w1 w2 · · · wn

]
=

[
u1 u2 · · · un

]

c11 c12 · · · c1n
c21 c22 · · · c2n
... ... . . . ...

cn1 cn2 · · · cnn
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the coordinate vectors of v relative to U and W are related by
a1
a2
...
an

 =


c11 c12 · · · c1n
c21 c22 · · · c2n
... ... . . . ...

cn1 cn2 · · · cnn



b1
b2
...
bn

 ≜ P


b1
b2
...
bn


we obtain [v]U by multiplying [v]W with P

P is called the transition matrix from W to U

the columns of P are the coordinate vectors of the basis vectors in W relative to U

Theorem ,

P is invertible and P−1 is the transition matrix from U to W
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Example
find [v]U , given

U =

{[
1
1

]
,

[
−1
1

]}
, W =

{[
2
1

]
,

[
1
0

]}
, [v]W =

[
−2
1

]
first, find the coordinate vectors of the basis vectors in W relative to U[

2 1
1 0

]
=

[
1 −1
1 1

] [
c11 c12
c21 c22

]
from which we obtain the transition matrix

P =

[
1 −1
1 1

]−1 [
2 1
1 0

]
=

1

2

[
3 1
−1 −1

]
and [v]U is given by

[v]U =
1

2

[
3 1
−1 −1

] [
−2
1

]
=

1

2

[
−5
1

]
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Nullspace

the nullspace of an m× n matrix is defined as

N (A) = {x ∈ Rn | Ax = 0}

the set of all vectors that are mapped to zero by f(x) = Ax

the set of all vectors that are orthogonal to the rows of A
if Ax = b then A(x+ z) = b for all z ∈ N (A)

also known as kernel of A
N (A) is a subspace of Rn .
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Example

A =

 2 −1
−4 2
−6 3

 , b =

−3
6
9



N (A) = {x | 2x1 − x2 = 0}
the solution set of Ax = b is {x | 2x1 − x2 = −3}
the solution set of Ax = b is the translation of N (A)
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Zero nullspace matrix

A has a zero nullspace if N (A) = {0}
if A has a zero nullspace and Ax = b is solvable, the solution is unique
columns of A are independent

, equivalent conditions: A ∈ Rn×n

A has a zero nullspace
A is invertible or nonsingular
columns of A are a basis for Rn
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Range space

the range of an m× n matrix A is defined as

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn }

the set of all m-vectors that can be expressed as Ax

the set of all linear combinations of the columns of A =
[
a1 · · · an

]
R(A) = {y | y = x1a1 + x2a2 + · · ·+ xnan, x ∈ Rn}

the set of all vectors b for which Ax = b is solvable
also known as the column space of A
R(A) is a subspace of Rm .
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Full range matrices

A has a full range if R(A) = Rm

, equivalent conditions:
A has a full range
columns of A span Rm

Ax = b is solvable for every b

N (AT ) = {0}

Linear algebra and applications Jitkomut Songsiri 265 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bases for R(A) and N (A)

A and B are row equivalent matrices, i.e.,

B = Ek · · ·E2E1A

Facts ,

elementary row operations do not alter N (A)

N (B) = N (A)

columns of B are independent if and only if columns of A are
a given set of column vectors of A forms a basis for R(A) if and only if the
corresponding column vectors of B form a basis for R(B)
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Examples
given a matrix A and its row echelon form B:

A =

−1 2 4 1
0 1 2 1
2 3 6 5

 , B =

1 0 0 1
0 1 2 1
0 0 0 0


basis for N (A): from {x | Ax = 0} = {x | Bx = 0}, we read

x1 + x4 = 0, x2 + 2x3 + x4 = 0

define x3 and x4 as free variables, any x ∈ N (A) can be written as

x =


x1
x2
x3
x4

 =


−x4

−2x3 − x4
x3
x4

 = x3


0
−2
1
0

+ x4


−1
−1
0
1


(a linear combination of (0,−2, 1, 0) and (−1,−1, 0, 1)
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hence, a basis for N (A) is




0
−2
1
0

 ,


−1
−1
0
1


 and dimN (A) = 2

basis for R(A): pick a set of the independent column vectors in B (here pick the 1st
and the 2nd columns)

the corresponding columns in A form a basis for R(A):
−1

0
2

 ,

21
3


dimR(A) = 2

Linear algebra and applications Jitkomut Songsiri 268 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

, conclusion: if R is the row reduced echelon form of A
the pivot column vectors of R form a basis for the range space of R
the column vectors of A corresponding to the pivot columns of R form a basis for
the range space of A
dimR(A) is the number of leading 1’s in R

dimN (A) is the number of free variables in solving Rx = 0
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Rank and Nullity
rank of a matrix A ∈ Rm×n is defined as

rank(A) = dimR(A)

nullity of a matrix A ∈ Rm×n is

nullity(A) = dimN (A)

Facts ,

rank(A) is maximum number of independent columns (or rows) of A

rank(A) ≤ min(m,n)

rank(A) = rank(AT )
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

for square matrices, full rank means nonsingular (invertible)
for skinny matrices (m ≥ n), full rank means columns are independent
for fat matrices (m ≤ n), full rank means rows are independent
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Rank-Nullity Theorem

for any A ∈ Rm×n,
rank(A) + dimN (A) = n

Proof:
a homogeneous linear system Ax = 0 has n variables
these variables fall into two categories

leading variables
free variables

# of leading variables = # of leading 1’s in reduced echelon form of A
= rank(A)

# of free variables = nullity of A
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Softwares

MATLAB
rank(A) provides an estimate of the rank of A
null(A) gives normalized vectors in an orthonormal basis for N (A)

Python
numpy.linalg.matrix_rank(A) provides an estimate of the rank of A
scipy.linalg.null_space(A) finds orthonormal basis for the nullspace of A
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Linear transformation
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Outline

linear transformation
matrix transformation
kernel and range
isomorphism
composition
inverse transformation
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Transformation
let X and Y be vector spaces

a transformation T from X to Y , denoted by

T : X → Y

is an assignment taking x ∈ X to y = T (x) ∈ Y ,

T : X → Y, y = T (x)

domain of T , denoted D(T ) is the collection of all x ∈ X for which T is defined
vector T (x) is called the image of x under T
collection of all y = T (x) ∈ Y is called the range of T , denoted by R(T )
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Example
example 1 define T : R3 → R2 as

y1 = −x1 + 2x2 + 4x3

y2 = −x2 + 9x3

example 2 define T : R3 → R as

y = sin(x1) + x2x3 − x23

example 3 general transformation T : Rn → Rm

y1 = f1(x1, x2, . . . , xn)
y2 = f2(x1, x2, . . . , xn)
... ...
ym = fm(x1, x2, . . . , xn)

where f1, f2, . . . , fm are real-valued functions of n variables
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Linear transformation

let X and Y be vector spaces over R

Definition: a transformation T : X → Y is linear if
T (x+ z) = T (x) + T (z), ∀x, y ∈ X (additivity)
T (αx) = αT (x), ∀x ∈ X, ∀α ∈ R (homogeneity)
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Examples

. which of the following is a linear transformation ?
matrix transformation T : Rn → Rm

T (x) = Ax, A ∈ Rm×n

affine transformation T : Rn → Rm

T (x) = Ax+ b, A ∈ Rm×n, b ∈ Rm

T : Pn → Pn+1

T (p(t)) = tp(t)

T : Pn → Pn

T (p(t)) = p(t+ 1)
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T : Rm×n → Rn×m, T (X) = XT

T : Rn×n → R, T (X) = det(X)

T : Rn×n → R, T (X) = tr(X)

T : Rn → R, T (x) = ∥x∥ ≜
√

x21 + x22 + · · ·+ x2n

T : Rn → Rn, T (x) = 0

denote F (−∞,∞) the set of all real-valued functions on (−∞,∞)

T : C1(−∞,∞) → F (−∞,∞)

T (f) = f ′

T : C(−∞,∞) → C1(−∞,∞)

T (f) =

∫ t

0
f(s)ds
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Examples of matrix transformation
T : Rn → Rm

T (x) = Ax, A ∈ Rm×n

zero transformation: T : Rn → Rm

T (x) = 0 · x = 0

T maps every vector into the zero vector

identity operator: T : Rn → Rn

T (x) = In · x = x

T maps a vector into itself
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Reflection operator

T : Rn → Rn

T maps each point into its symmetric image about an axis or a line

T (x) =

[
−1 0
0 1

]
x T (x) =

[
0 1
1 0

]
x
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Projection operator
T : Rn → Rn

T maps each point into its orthogonal projection on a line or a plane

T (x) =

[
1 0
0 0

]
x T (x) =

1 0 0
0 1 0
0 0 0

x
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Rotation operator
T : Rn → Rn

T maps points along circular arcs

T rotates x through an angle θ

w = T (x) =

[
cos θ − sin θ
sin θ cos θ

]
x
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Selector transformations
these transformations can be represented as y = T (x) = Ax

partial selection shuffle reverser down-sampling

partial selection: select some entries of x
shuffle: randomize entries in x

reverser: reverse the order of x
down-sampling: sub-sample entries in x, e.g., x(1:2:end)
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Shift transformations
shifting sequences as a matrix transformation T (x) = Ax

forward shift backward shift

T1(x) =



x2
x3
x4
...
xn
x1


, T2(x) =



xn
x1
x2
...

xn−2

xn−1



what is the associated matrix A for each transformation ?
do you notice some structure of A ?
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Signal processing
differencing and cumulative sum as matrix transformations T (x) = Ax

-2

0

2

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

Difference

0 2 4 6 8 10 12 14 16 18 20

-6

-4

-2

0

2

4

Cumulative sum

0 2 4 6 8 10 12 14 16 18 20

T1(x) =


x2 − x1
x3 − x2

...
xn − xn−1



T2(x) =


x1

x1 + x2
x1 + x2 + x3

...
x1 + x2 + · · ·+ xn


diff and cumsum commands in MATLAB
what is the associated matrix A for each transformation ?
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Image transformation
cropping a 1200× 850-pixel image to 490× 430-pixel image

transformation of a matrix of M ×N to the size of m× n

T : RM×N → Rm×n, T (X) = AXB

where A selects the rows of X and B selects the columns of X
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Image of linear transformation
let V and W be vector spaces and a basis for V is

S = {v1, v2, . . . , vn}

let T : V → W be a linear transformation

the image of any vector v ∈ V under T can be expressed by

T (v) = a1T (v1) + a2T (v2) + · · ·+ anT (vn)

where a1, a2, . . . , an are coefficients used to express v, i.e.,

v = a1v1 + a2v2 + · · ·+ anvn

(follow from the linear property of T )
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Definition

let T : X → Y be a linear transformation from X to Y

Definitions:

kernel of T is the set of vectors in X that T maps into 0

ker(T ) = {x ∈ X | T (x) = 0}

range of T is the set of all vectors in Y that are images under T

R(T ) = {y ∈ Y | y = T (x), x ∈ X}

Theorem .

ker(T ) is a subspace of X
R(T ) is a subspace of Y
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Example

matrix transformation: T : Rn → Rm, T (x) = Ax

ker(T ) = N (A): kernel of T is the nullspace of A
R(T ) = R(A): range of T is the range (column) space of A

zero transformation: T : Rn → Rm, T (x) = 0

ker(T ) = Rn, R(T ) = {0}

identity operator: T : V → V , T (x) = x

ker(T ) = {0}, R(T ) = V

differentiation: T : C1(−∞,∞) → F (−∞,∞), T (f) = f ′

ker(T ) is the set of constant functions on (−∞,∞)
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Rank and Nullity

rank of a linear transformation T : X → Y is defined as

rank(T ) = dimR(T )

nullity of a linear transformation T : X → Y is defined as

nullity(T ) = dimker(T )

(provided that R(T ) and ker(T ) are finite-dimensional)

redrank-Nullity theorem: suppose X is a finite-dimensional vector space

rank(T ) + nullity(T ) = dim(X)
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Proof of rank-nullity theorem

assume dim(X) = n

assume a nontrivial case: dimker(T ) = r where 1 < r < n

let {v1, v2, . . . , vr} be a basis for ker(T )
let W = {v1, v2, . . . , vr} ∪ {vr+1, vr+2, . . . , vn} be a basis for X
we can show that

S = {T (vr+1), . . . , T (vn)}

forms a basis for R(T ) (∴ complete the proof since dim S = n− r)
span S = R(T )

for any z ∈ R(T ), there exists v ∈ X such that z = T (v)

since W is a basis for X, we can represent v = α1v1 + · · ·+ αnvn

we have z = αr+1T (vr+1) + · · ·+ αnT (vn) (∵ v1, . . . , vr ∈ ker(T ))
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S is linearly independent, i.e., we must show that

αr+1T (vr+1) + · · ·+ αnT (vn) = 0 =⇒ αr+1 = · · · = αn = 0

since T is linear

αr+1T (vr+1) + · · ·+ αnT (vn) = T (αr+1vr+1 + · · ·+ αnvn) = 0

this implies αr+1vr+1 + · · ·+ αnvn ∈ ker(T )

αr+1vr+1 + · · ·+ αnvn = α1v1 + α2v2 + · · ·αrvr

since {v1, . . . , vr, vr+1, . . . , vn} is linear independent, we must have

α1 = · · · = αr = αr+1 = · · · = αn = 0

Linear algebra and applications Jitkomut Songsiri 295 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

One-to-one transformation
a linear transformation T : X → Y is said to be one-to-one if

∀x, z ∈ X T (x) = T (z) =⇒ x = z

T never maps distinct vectors in X to the same vector in Y

also known as injective transformation
, Theorem: T is one-to-one if and only if ker(T ) = {0}, i.e.,

T (x) = 0 =⇒ x = 0

for T (x) = Ax where A ∈ Rn×n,

T is one-to-one ⇐⇒ A is invertible

Linear algebra and applications Jitkomut Songsiri 296 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Onto transformation
a linear transformation T : X → Y is said to be onto if

for every vector y ∈ Y , there exists a vector x ∈ X such that

y = T (x)

every vector in Y is the image of at least one vector in X

also known as surjective transformation
, Theorem: T is onto if and only if R(T ) = Y

, Theorem: for a linear operator T : X → X,

T is one-to-one if and only if T is onto
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Examples

. which of the following is a one-to-one transformation ?
T : Pn → Rn+1

T (p(t)) = T (a0 + a1t+ · · ·+ ant
n) = (a0, a1, . . . , an)

T : Pn → Pn+1

T (p(t)) = tp(t)

T : Rm×n → Rn×m, T (X) = XT

T : Rn×n → R, T (X) = tr(X)

T : C1(−∞,∞) → F (−∞,∞), T (f) = f ′
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Matrix transformation

consider a linear transformation T : Rn → Rm,

T (x) = Ax, A ∈ Rm×n

, Theorem: the following statements are equivalent
T is one-to-one
the homogeneous equation Ax = 0 has only the trivial solution (x = 0)
rank(A) = n

, Theorem: the following statements are equivalent
T is onto
for every b ∈ Rm, the linear system Ax = b always has a solution
rank(A) = m
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Isomorphism

a linear transformation T : X → Y is said to be an isomorphism if

T is both one-to-one and onto

if there exists an isomorphism between X and Y , the two vector spaces are said to be
isomorphic

, Theorem:
for any n-dimensional vector space X, there always exists a linear transformation
T : X → Rn that is one-to-one and onto (for example, a coordinate map)
every real n-dimensional vector space is isomorphic to Rn
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Examples
T : Pn → Rn+1

T (p(t)) = T (a0 + a1t+ · · ·+ ant
n) = (a0, a1, . . . , an)

Pn is isomorphic to Rn+1

T : R2×2 → R4

T

([
a1 a2
a3 a4

])
= (a1, a2, a3, a4)

R2×2 is isomorphic to R4

in these examples, we observe that
T maps a vector into its coordinate vector relative to a standard basis
for any two finite-dimensional vector spaces that are isomorphic, they have the
same dimension
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Composition of linear transformation
let T1 : U → V and T2 : V → W be linear transformations

the composition of T2 with T1 is the function defined by

(T2 ◦ T1)(u) = T2(T1(u))

where u is a vector in U

Theorem . if T1, T2 are linear, so is T2 ◦ T1
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Examples
example 1: T1 : P1 → P2, T2 : P2 → P2

T1(p(t)) = tp(t), T2(p(t)) = p(2t+ 4)

then the composition of T2 with T1 is given by

(T2 ◦ T1)(p(t)) = T2(T1(p(t))) = T2(tp(t)) = (2t+ 4)p(2t+ 4)

example 2: T : V → V is a linear operator, I : V → V is identity operator

(T ◦ I)(v) = T (I(v)) = T (v), (I ◦ T )(v) = I(T (v)) = T (v)

hence, T ◦ I = T and I ◦ T = T
example 3: T1 : Rn → Rm, T2 : Rm → Rn with

T1(x) = Ax, T2(w) = Bw, A ∈ Rm×n, B ∈ Rn×m

then T1 ◦ T2 = AB and T2 ◦ T1 = BA
Linear algebra and applications Jitkomut Songsiri 303 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Order of operations matters
let T1, T2 : R2 → R2 be the following matrix transformations

T1(x) is the projection of x on the x1-axis
T2(x) is the rotation of x by θ (clockwise direction)

project and rotate rotate and project

the composite of T2 with T1 VS the composite of T1 with T2

which is which ?
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Nonlinear composite transformations

composite transformations can be defined for nonlinear mappings

many examples in applications:
T1 : Rn → R and T2 : R → R norm-squared

T1(x) = ∥x∥2, T2(x) = x2 ⇒ (T2 ◦ T1)(x) = ∥x∥22 = xTx

T1 : Rn → Rn and T2 : Rm → R norm of affine

T1(x) = Ax+ b, T2(x) = ∥x∥22 ⇒ (T2 ◦ T1)(x) = ∥Ax+ b∥22

T1 : Rn → Rm and T2 : Rm → Rm transform in neural network

T1(x) = Wx+ b, T2(x) = max(0, x) ⇒ (T2 ◦ T1)(x) = max(0,Wx+ b)
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Two operators cancel each other
scaling operators: T1, T2 : Rn → Rn

T1(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn)

T2(x1, x2, . . . , xn) = (x1/a1, x2/a2, . . . , xn/an), ∀ak ̸= 0

(T2 ◦ T1)(x) = (T1 ◦ T2)(x) = x

shift operators: T1, T2 : Rn → Rn

T1(x1, x2, . . . , xn) = (x2, x3, x4, . . . , xn, x1)

T2(x1, x2, . . . , xn) = (xn, x1, x2, . . . , xn−2, xn−1)

(T2 ◦ T1)(x) = T2(x2, x3, . . . , xn, x1) = x

(T1 ◦ T2)(x) = T1(xn, x1, . . . , xn−2, xn−1) = x

in these examples, T2 brings the image under T1 back to the original x !
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Inverse of linear transformation

a linear transformation T : V → W is invertible if there is a transformation
S : W → V satisfying

S ◦ T = IV and T ◦ S = IW

we call S the inverse of T and denote S = T−1

T−1(T (u)) = u ∀u ∈ U
T (T−1(w)) = w ∀w ∈ R(T )

Facts:
the inverse transformation T−1 : R(T ) → V exists if and only if T is one-to-one
T−1 : R(T ) → V is also linear .

Linear algebra and applications Jitkomut Songsiri 307 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inverse of matrix transformation
consider T : Rn → Rn where T (x) = Ax

T is one-to-one if and only if A is invertible
T−1 exists if and only if A is invertible

the inverse transformation must satisfy

T−1(T (x)) = T−1(Ax) = x, ∀x ∈ Rn

to find the description of T−1

let y = Ax and since A−1 exists, we can write x = A−1y

T−1(Ax) = T−1(y) = A−1y

this holds for all y ∈ Rn (since y ∈ R(A) = Rn)
conclusion: the inverse transformation is simply the matrix transformation given by
A−1
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Inverse of difference operator

T : Rn → Rn, T (x) =


x1

x2 − x1
x3 − x2

...
xn − xn−1

 =


1
−1 1

−1 1
. . . . . .

−1 1

x ≜ Ax

does T have an inverse ? if yes, what would it be ?
please check . that A is invertible and therefore T−1 exists
T−1(x) is given

T−1(x) = A−1x =


1
1 1
... ... . . .
1 1 1 1

x =


x1

x1 + x2
...

x1 + x2 + · · ·+ xn


T−1 is the cumulative sum operator ! (difference cancels with sum)
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Inverse of transformation on Pn

T : P1 → P1, T (p(x)) = p(x+ c) where c ∈ R is given
it can be verified . that T is linear and one-to-one
let p(x) = a0 + a1x be any polynomial in P1, T−1 must satisfy

T−1(T (p(x)) = T−1(a0 + a1(x+ c)) = p(x) = a0 + a1x, ∀a0, a1 ∈ R

to find description of T−1, let q(x) = b0 + b1x ≜ a0 + a1(x+ c) and we should
write a0, a1 in terms of b0, b1

b0 + b1x = a0 + a1c+ a1x ⇒ a0 = b0 − b1c, a1 = b1

we can write T−1(b0 + b1x) = b0 − b1c+ b1x = b0 + b1(x− c)

it shows that T−1(q(x)) = q(x− c) (forward translation x+ c cancels with backward
translation x− c)
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Domain of T−1 may not be the whole co-domain of T
T : R2 → R2×2 and given a, c ̸= 0

T

([
x1
x2

])
=

[
ax1 0
0 cx2

]
we can verify that .

T is linear and one-to-one (hence, T−1 exists)

R(T ) = span
{[

1 0
0 0

]
,

[
0 0
0 1

]}
(not the whole R2×2)

T−1 : R(T ) → R2 is defined from R(T ) and must satisfy

T−1

([
ax1 0
0 cx2

])
=

[
x1
x2

]
it follows that T−1(Y ) = (y11/a, y22/c) where Y ∈ R(T )
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Composition of one-to-one linear transformation

if T1 : U → V and T2 : V → W are one-to-one linear transformation, then
T2 ◦ T1 is one-to-one
(T2 ◦ T1)

−1 = T−1
1 ◦ T−1

2

example: T1 : Rn → Rn, T2 : Rn → Rn

T1(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn), ak ̸= 0, k = 1, . . . , n

T2(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1)

both T1 and T2 are invertible and the inverses are

T−1
1 (w1, w2, . . . , wn) = ((1/a1)w1, (1/a2)w2, . . . , (1/an)wn)

T−1
2 (w1, w2, . . . , wn) = (wn, w1, . . . , wn−1)
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from a direct calculation, the composition of T−1
1 with T−1

2 is

(T−1
1 ◦ T−1

2 )(w) = T−1
1 (wn, w1, . . . , wn−1)

= ((1/a1)wn, (1/a2)w1, . . . , (1/anwn−1))

now consider the composition of T2 with T1

(T2 ◦ T1)(x) = (a2x2, . . . , anxn, a1x1)

it is clear to see that
(T2 ◦ T1) ◦ (T−1

1 ◦ T−1
2 ) = I
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Matrix representation for linear transformation
let T : V → W be a linear transformation

V is a basis for V
dimV = n

W is a basis for W
dimW = m

how to represent an image of T in terms of its coordinate vector ?

problem: find a matrix A ∈ Rm×n that maps [v]V into [T (v)]W
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Key idea
the matrix A must satisfy

A[v]V = [T (v)]W , for all v ∈ V

hence, it suffices to hold for all vector in a basis for V
suppose a basis for V is V = {v1, v2, . . . , vn}

A[v1] = [T (v1)], A[v2] = [T (v2)], . . . , A[vn] = [T (vn)]

(we have dropped the subscripts that refer to the choice of bases V,W
A is a matrix of size m× n, so we can write A as

A =
[
a1 a2 . . . an

]
where ak’s are the columns of A
the coordinate vectors of vk’s are simply the standard unit vectors

[v1] = e1, [v2] = e2, . . . , [vn] = en
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hence, we have

A[v1] = a1 = [T (v1)], A[v2] = a2 = [T (v2)], · · · , A[vn] = an = [T (vn)]

stack these vectors back in A

A =
[
[T (v1)] [T (v2)] · · · [T (vn)]

]
the columns of A are the coordinate maps of the images of the basis vectors in V
we call A the matrix representation for T relative to the bases V and W and
denote it by

[T ]W,V

a matrix representation depends on the choice of bases for V and W
special case: T : Rn → Rm, T (x) = Bx we have [T ] = B relative to the standard
bases for Rm and Rn
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Example 1
T : V → W where

V = P1 with a basis V = {1, t}
W = P1 with a basis W = {t− 1, t}

define T (p(t)) = p(t+ 1), find [T ] relative to V and W
solution.
find the mappings of vectors in V and their coordinates relative to W

T (v1) = T (1) = 1 = −1 · (t− 1) + 1 · t
T (v2) = T (t) = t+ 1 = −1 · (t− 1) + 2 · t

hence [T (v1)]W = (−1, 1) and [T (v2)]W = (−1, 2)

[T ]WV =
[
[T (v1)]W [T (v2)]W

]
=

[
−1 −1
1 2

]
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Example 2
given a matrix representation for T : P2 → R2

[T ] =

[
5 2 −1
3 0 4

]
relative to the bases V = {2− t, t+ 1, t2 − 1} and W = {(1, 0), (1, 1)}

find the image of 6t2 under T

solution. find the coordinate of 6t2 relative to V by writing

6t2 = α1 · (2− t) + α2 · (t+ 1) + α3 · (t2 − 1)

solving for α1, α2, α3 gives

[6t2]V =

22
6
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from the definition of [T ]:

[T (6t2)]W = [T ]WV [6t
2]V =

[
5 2 −1
3 0 4

]22
6

 =

[
8
30

]

then we read from [T (6t2)]W that

T (6t2) = 8 · (1, 0) + 30 · (1, 1) = (38, 30)

Linear algebra and applications Jitkomut Songsiri 319 / 323



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Matrix representation for linear operators

we say T is a linear operator if T is a linear transformation from V to V

typically we use the same basis for V, says V = {v1, v2, . . . , vn}
a matrix representation for T relative to V is denoted by [T ]V where

[T ]V =
[
[T (v1)] [T (v2)] . . . [T (vn)]

]
Theorem ,

T is one-to-one if and only if [T ]V is invertible
[T−1]V = ([T ]V )

−1

what is the matrix (relative to a basis) for the identity operator ?
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Matrix representation for composite transformation
if T1 : U → V and T2 : V → W are linear transformations
and U, V,W are bases for U ,V,W respectively
then

[T2 ◦ T1]W,U = [T2]W,V · [T1]V,U

example: T1 : U → V , T2 : V → W

U = P1, V = P2, W = P3

U = {1, t}, V = {1, t, t2}, W = {1, t, t2, t3}

T1(p(t)) = T1(a0 + a1t) = 2a0 − 3a1t

T2(p(t)) = 3tp(t)

find [T2 ◦ T1]
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solution. first find [T1] and [T2]

T1(1) = 2 = 2 · 1 + 0 · t+ 0 · t2
T1(t) = −3t = 0 · 1− 3 · t+ 0 · t2 =⇒ [T1] =

2 0
0 −3
0 0


T2(1) = 3t = 0 · 1 + 3 · 1 + 0 · t2 + 0 · t3
T2(t) = 3t2 = 0 · 1 + 0 · 1 + 3 · t2 + 0 · t3
T2(t

2) = 3t3 = 0 · 1 + 0 · 1 + 0 · t2 + 3 · t3
=⇒ [T2] =


0 0 0
3 0 0
0 3 0
0 0 3


next find [T2 ◦ T1]

(T2 ◦ T1)(1) = T2(2) = 6t
(T2 ◦ T1)(t) = T2(−3t) = −9t2

=⇒ [T2 ◦ T1] =


0 0
6 0
0 −9
0 0


easy to verify that [T2 ◦ T1] = [T2] · [T1]
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