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How to read this handout
the note is used with lecture in EE205 (you cannot master this topic just by
reading this note) — class activities include
m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples
always read 'textbooks’ after lecture
pay attention to the symbol &; you should be able to prove such & result
each chapter has a list of references; find more formal details/proofs from in-text
citations
almost all results in this note can be Googled; readers are encouraged to
‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first
[@ typos and mistakes can be reported to jitkomut@gmail.com

oEN
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System of linear equations

a linear system of m equations in n variables

a11ry + apxe + -+ aipy, =

a21x1 + a22xo + - - + a2pxy =

Am1T1 + Am2T2 + - + AGppTn =

in matrix form: Az =b

problem statement: given A, b, find a solution z (if exists)
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Example: solving ordinary differential equations

given y(0) = 1,y(0) = —1,4(0) = 0, solve
¥y +6+11lg+6y=0
the closed-form solution is
y(t) = Cre™t 4 Che 2t 4 C3e™3

C1,C5 and Cs can be found by solving a set of linear equations

1 = y0) = Ci+Ca+0Cs
-1 = y(O) = —-(C1—-2Cy—3Cs
0 = y(()) = (C14+4C5+9C3
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Example: linear static circuit

given V., Ry, Ro, ..., Rs, find the currents in each loop

Rl R2 R3
YW YW WWA
T ] Tt /73‘ V. = (Ri+ Ry4)ir — Ryiy
4 <i> R4% %R5 0 = —Ryi1+ (Re+ Ry + Rs)ia — Rsis
0 = —Rsyio+ (R3 + Rs)is

by KVL, we obtain a set of linear equations
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Example: polynomial interpolation

fit a polynomial
p(t) = 21 + xot + x3t> 4+ F 2t !

through n points (t1,y1), ..., (tn, Yn)

write out the conditions on z:

t1 to t3 ty ts
problem data (parameters): (t1,91), (t2,42), ..., (tn, Yn)
problem variables: find x1,...,z, such that p(t;) = y; for all ¢

Linear algebra and applications Jitkomut Songsiri

p(t1) = 1 + zaty + 23t + - -+
p(t2) = 21 + zaty + 385 + - -

p(tn) =x1 + Tot, + .CC?,t?1 + .-

+ a2ttt

+ 2ty !

+ 2t
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Special case: two variables

Examples:
21’1 — T2 = -1 2:]:1 — T2 = -1 2IL’1 — T2 = -1
dr1 — 220 = 2 T +x9 = -1 dr1 — 220 = -2
Z2 To To
A y A
x{ T X1
(a) no solution (b) one solution (c) many solutions

m no solution if two lines are parallel but different interceptions on x2-axis
m many solutions if the two lines are identical
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Geometrical interpretation

2ry —axa+ a3 =1

the set of solutions to a linear equation
a1x1] + a2 + - -+ apTy =b

can be interpreted as a hyperplane on R"

a solution to m linear equations is an intersection of m hyperplanes
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Three types of linear equations

m square if m =n (A is square)
[au a12] [331] _ [bl]
az ag] T2 ba
m underdetermined if m <n (A is fat)
z1
[au a2 a13] | = [bﬂ
a1 Gz Gz | b
m overdetermined if m >n (A is skinny)
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Existence and uniqueness of solutions

given a system of linear equations existence:
m no solution (the linear system is inconsistent)
m a solution exists (the linear system is consistent)

uniqueness:
m the solution is unique
m there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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no solution

. 1 +xyg = 1
ritry =1 201 +x2 = —1
21 + 220 = —x = 2
unique solution
o 4w — r1+x9 = 0
T o =(1/3,2/3) 2r1 4w = —1 =>z=(-1,1)
201 —x0 = 0 o — 1y = -2
infinitely many solutions
] — 22 + 22 = 1
1 +x2 = 1 1_$12+ - 3 _
oyt 2wy = 2 311 — 2wy + 313 = 3

r=(1-t1t), ax=(1-t3tt), teR
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Elementary row operations

define the augmented matrix of the linear equations on page 5 as

ailr a2 an | b
as1 a2 a2y | bo
Aml aGm2 - Amn bm

the following operations on the row of the augmented matrix:
multiply a row through by a nonzero constant

interchange two rows
add a constant times one row to another

do not alter the solution set and yield a simpler system

these are called elementary row operations on a matrix
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Example

T, + 3x9 + 223 =
—x1+x0+2x3 = —1
21‘1 — X9 — 2553 == 3

augmented matrix
=

add the first row to the second (R; + Ry — R2)

1+ 39+ 223 = 2 1
4x9 4+ 3x3 =1 — 0
201 —x0 — 223 = 3 2

-1

add —2 times the first row to the third (—2R; + R — R3)

1+ 3x9 +223 = 2 1
4x9 4 3x3 = 1 - 0
—7.%‘2 — 6.%‘3 = -1 0
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2 2
1 -1
-2 3
2
1
3
2
1
-1
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multiply the second row by 1/4 (R2/4 — R3)

T+ 3x9 + 223 =
o + %xg =
—7%2 — 6%3 =

add 7 times the second row to the third (7TRs + R3 — R3)

r1 + 3x2 + 223 =
T + %1’3 =

3 —

=

Nl V]

Qo= DN

multiply the third row by —4/3 (—4R3/3 — R3)

T+ 3x9 + 223 =
T2 + %Lvs
I3 =

Linear algebra and applications
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1
0
0

1 3
— 01
0 0

32 2
1 3/4 1/4
-7 —6 -1
2 2
3/4 1/4
—3/4 3/4
32 2
1 3/4 1/4
0 1 -1
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add —3/4 times the third row to the second (R2 — (3/4)R3 — R2)

1 +3x2+ 223 = 2 1 3 2 2
T3 = -1 0 01 -1

add —3 times the second row to the first (R; — 3R2 — Ry)

1+ 2x3 = -1 1 0 2 -1
T3 = -1 0 0 1 -1

add —2 times the third row to the first (R; — 2Ry — R;)

ry = 1 1 00 1
rs = —1 001 —1
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Gaussian elimination

m a systematic procedure for solving systems of linear equations

m based on performing row operations of the augmented matrix

m simplifies the system of equations into an easy form where a solution can be
obtained by inspection
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Row echelon form

definition: a matrix is in row echelon form if
a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1 (called a leading 1)
all nonzero rows are above any rows of all zeros

in any two successive rows that do not consist entirely of zeros, the leading 1 in
the lower row occurs farther to the right than the leading 1 in the higher row

examples:
1 4 -3 5 1 10 012 5 0
01 3 0f, 0 1 0f, 001 —-10
00 1 2 0 00 000 0 1
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Reduced row echelon form

definition: a matrix is in reduced row echelon form if
m it is in a row echelon form and

m every leading 1 is the only nonzero entry in its column

examples:
01 -2 01
[00} (1)(1)8:; 00 0 1 3
o e A
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Facts about echelon forms

every matrix has a unique reduced row echelon form
row echelon forms are not unique

0 1
-1 ({~1]0
0 0

111
2| -1
0] 0

O N W
o = O

11
example: 01
00

all row echelon forms of a matrix have the same number of zero rows

the leading 1's always occur in the same positions in the row echelon forms of a
matrix A

the columns that contain the leading 1's are called pivot columns of A

@ rank of A is defined as

the number of nonzero rows of (reduced) echelon form of A
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Inspecting a solution

m simplify the augmented matrix to the reduced echelon form

m read the solution from the reduced echelon form

0
01
0 0
10
01
0

10
01
0 0

0
3
0

)

N

0

0 = 0-z3=1 (no solution)

1

-2

1| = =z =-2, za=—-1, x3=>5 (unique solution)
)

= x1 =2, z2 =1 (unique solution)
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Leading and free variables

T+ 3$2 = =2
Tro — I3
definition:

m the corresponding variables to the leading 1's are called leading variables
m the remaining variables are called free variables

here x1,xo are leading variables and z3 is a free variable

let x3 =t and we obtain
1 =-3t—2, x3=t+1, x3=1
(many solutions)
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General solution

-5 1 4
O 0 0 = x1—bratax3=4
0 0

x1 is the leading variable, z2 and x3 are free variables
let x9 = s and 3 = ¢ we obtain

Ty = Hs—t+4
Ty = S (many solutions)
r3 = t

by assigning values to s and ¢, a set of parametric equations:

1 = Hs—t+4
Tro9 = S
r3 = t

is called a general solution of the system

Linear algebra and applications Jitkomut Songsiri
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Solution to a linear system
solving b = Az with A € R™*"™ has only three possibilities
no solution: if rank([A|b]) # rank(A)

11 30 1 0] 2

01 2|-1], 0 1|1

0 0 0] 2 0 0] -1
unique solution: if rank([A]b]) = rank(A) =n

11 30 1 0l2

01 2/-1], | 5|3

0 0 1] 2

infinitely many solution: if rank([A[b]) = rank(A4) <n

11 30
01 2]-1
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Gaussian-Jordan elimination

m simplify an augmented matrix to the reduced row echelon form
m inspect the solution from the reduced row echelon form

m the algorithm consists of two parts:

m forward phase: zeros are introduced below the leading 1's
m backward phase: zeros are introduced above the leading 1's
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Example

T1 4+ x20 + 223 = 8 1 1 2 8
—x1—2294+32z3 =1 — |—-1 -2 3 1
3rx1 — Txo+4x3 = 10 3 =7 4 10

use row operations

R+ Ry — Ry —3R1 + R3 — R3 (—1) - Ry — Ry

1 1 2 8 1 1 2 8 1 1 2 8
0 -1 5 9 0 -1 5 9 o 1 -5 -9
3 =7 4 10 0 —-10 -2 —-14 0 —-10 -2 —-14

10Rs + R3 — R3 R3/(—52) — R3

1 1 2 8 11 2 8
01 -5 =9 01 -5 -9
0 0 —52 —-104 00 1 2

(a row echelon form)

we have added zero below the leading 1's (forward phase)
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continue performing row operations

5R3+ Ry Ry —Ro+R1 >Ry —2R3+Ri—> Ry

11 2 8 1 0 2 7 1 00 3
0101 0101 0101
0 01 2 0 01 2 001 2

(reduced echelon form)

we have added zero above the leading 1's (backward phase)
from the reduced echelon form, rank([A[b]) = rank(A) =n

the system has a unique solution

:B1:3, $2:17 $3:2
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Homogeneous linear systems
definition:

a system of linear equations is said to be homogeneous if b;'s are all zero

a1171 + a12xa + -+ apr, = 0
0

ag1r1 + agexe + - + agpy =

Am1T1 + amaT2 + -+ + Gppn, = 0
B =29 =---=x, =0 is the trivial solution to Az =0
m if (x1,29,...,2,) is a solution, so is (axy, axs,...,ax,) for any o € R

m hence, if a solution exists, then the system has infinitely many solutions (by
choosing « arbitrarily)

m if z and w are solutions to Ax =0, so is z + aw for any o € R
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example

T1 — X9+ 2x3 — T4 =0 1 -1 2 -1 0
201 +x90 — 2203 — 224 = 0 — 2 1 -2 -2 0
—x1 4+ 229 —4dax3+x4 = 0 -1 2 -4 1 0
3x1 — 314 = 0 3 0 0 -3 0
the reduced echelon form is

1 0 0 -1 0

0 1 -2 0 0 — Tr1 — T4 =0

0 0 0 0 0 xro — 2333 =0

0 0 O 0 O

define x3 = s, x4 = t, the parametric equation is
r1=t, T2=2s, x3=sS, x4=1

there are two nonzero rows, so we have two (n — 2 = 2) free variables
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Properties of homogeneous linear system

more properties:

m the last column of the augmented matrix is entirely zero (and hence, can be
neglected in the augmented matrix)

m if the reduced row echelon form has r nonzero rows, then the system hasn —r
free variables

m a homogeneous linear system with more unknowns than equations has infinitely
many solutions
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Range space of A

range space of A € R™*" is

R(A) {yeR™|y= Az, forzeR"}

rank(A) £ number of leading 1's in row echelon form of A

m y € R(A) if and only if y is a linear combination of columns in A:
Yy =z101 +T202 + -+ - + XTpay

m a linear system y = Ax has a solution if and only if y € R(A) (existence)

m equivalently, y = Ax has a solution if and only if rank(A) = rank([A | y])
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Nullspace of A

nullspace of A is
NA) ={zeR"| Az =0}

example:
2 -5 3 0 100 1/2 jﬁ
A=|-2 -1 3 1|, = R=10 10 14|, w=ws| ;| wcR
5 -1 -3 2 00 1 1/12 .

uniqueness of solution:
m if the linear system has a solution, the solution is unique if and only if N'(A) = {0}

m if 2, is a solution to Az = b, and N'(A) # {0} then a general solution to Az =b
can be expressed as z = x;, + z where z € N'(A) (infinitely many solutions)
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Summary of solving linear systems
for A€ R™ " b e R™*", the linear system Ax = b has a solution if and only if
be R(A) <= rank([A|b]) =rank(A)
if Ax = b has a solution, the uniqueness of the solution in three cases:

m square A: the solution is unique < N(A) # {0} < no zero rows in reduced
echelon form of A

m tall A: the solution is unique < N (A) # {0}
m fat A: since N (A) # {0} (always), the solutions are never unique
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Applications of linear equations
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Outline

m |east-squares problem
m least-norm problem

m numerical methods in solving linear equations
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| east-squares problem

setting: find a linear relationship between y; and z; ;,

y:ﬁ1$1+/82w2+"'+6pxpéxT6

given data as y; and x;1, T2, ..., @ fori =1,2,... . N

the data equation in a matrix form:

Y1 Tl T2 o Tin | [ A1

Y2 | | w2 w22 oo T2p B2 a _x
= = y=Xp

YN ITml Tm2 *°° Tmn /Bn

problem: given X € R™*" y € R™, solve the linear system for 3 € R"
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| east-squares: problem statement

overdetermined linear equations:
XB=y, Xismxnwithm>n

for most y, we cannot solve for ? recall the existence of a solution?

linear least-squares formulation:

m n
C 2 2
mlnlﬁmlze ly — XBl5 = Z(Z XiiBi — vi)
i=1 j=1
m r =y — X[ is called the residual error
m [ with smallest residual norm ||r|| is called the least-squares solution

m it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual
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L east-squares: solution

the zero gradient condition of LS objective is
d 2 T
—=lly = XBlls =—-X"(y - XB) =0
dp
which is equivalent to the normal equation
XTxp=x"Ty

if X is full rank, it can be shown that X7 X is invertible:
m least-squares solution can be found by solving the normal equations
m n equations in n variables with a positive definite coefficient matrix
m the closed-form solution is f = (X7 X)"1XTy

(XTX)~1XT is the left inverse of X
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Least-squares: data fitting

given data points {(¢;, ;) }Y;, we aim to approximate y using a function g(t)

y = g(t) = Brgi(t) + P2g2(t) + -+ - + Bugn(t)
m gx(t) : R = R is a basis function

m polynomial functions: 1,¢,¢2,...,t"
m sinusoidal functions: cos(wgt),sin(wit) for k=1,2,...,n
m the linear regression model can be formulated as
n g1(t1)  g2(t1) - gn(t)| [P
ya | |oult) g2(t2) - gnl(t2) | [B2| .
Ym gl(tm)

y=Xp
92(tm)

m often have m > n, i.e., explaining y using a few parameters in the model
Linear algebra and applications
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Example
fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t?)

— o
25 — Gzt
ﬁz-’ﬂz
s By
—;3,114
T Bsz®
— B’

basis functions

m (right) the weighted sum of basis functions (z¥) is the fitted polynomial
m the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Least-squares: Finite Impulse Response model
given input/output data: {(y(t),u(t))};~,, we aim to estimate FIR model parameters

n—1

y(t) = Y h(k)u(t — k)

k=0

determine h(0), h(1),...,h(n — 1) that gives FIR model output closest to y

y(n—1) un—1) u(n—-2) ... u(0) h(0)
y(n) _ u(n) un—1) ... u(1) h(1)
y(m) wm)  wm—-1) .. wm-n+1)| [hn-1)

m y(t) is a response to u(t),u(t —1),...,u(t — (n — 1))
m we did not use initial outputs y(0),y(1),...,y(n — 2) since there are no historical
input data for those outputs
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FIR: example

setting: y(t + 1) = ay(t) + bu(t) , y(0) =0

m relationship between y and u: write the equation recursively
y(t) = a'y(0) + a' " 1bu(0) + " 2bu(l) + - - - + bu(t — 1)
t—1
= a'y(0) + Z a" " hu(r)
7=0
m relate it with the convolution equation: y(t) = >"p2, h(k)u(t — k)

h(0)=0, h(1)=b, h(2)=ab, h(3)=a?b,..., h(k)=d""1b

m the actual h(k) decays as k increases but we estimate the first n sequences, i.e.,

~

h(0),h(1),..., h(n—1)
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FIR: example

setting: a = —0.5,b = 0.2, m = 50,n = 5, randomize u(t) € {—1,1}

0.4

0.2 F

-0.2

-0.4

0.2

0.1
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m actual h(k) decays to zero, the first n
sequences of h(k) are close to actual
values

m the predicted output by FIR model is
close to the actual output

m h(k) is estimated by A\y in MATLAB,
which returns the least-squares
solution
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L east-norm problem

setting: given A € R™*" b € R™ where m < n and A is full row rank

(% by assumption, the system Az = b has many solutions)

a’z +b the least-norm problem is

Y
<>/ : minimize |[z|l2 subjectto Ax =15
X
x*

/

m find a point on hyperplane Ax = b that has the minimum 2-norm

m it extends from solving an underdetermined system that has many solutions but
we specifically aim to find the solution with smallest norm
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Least-norm solution

the least-norm solution is
a* = AT(AAT)ly

m since A is full rank, it can be shown that AAT is invertible

m z* is linear in y and the coefficient is the right inverse of A

Proof. let  be any solution to Az =b

m x — x* is always orthogonal to x; by using A(z —2*) =0
(2 a*)7a* = (& — ) AT(AAT) 'y = (Al — 2))7 (AAT) "y =0
m ||z| is always greater than ||z*||, hence z* is optimal

l2l? = lla* + 2 — 2*[* = |2*|* + (@ — 2*)"2* +]lz — 2*|* > [|l2*]*
—_——
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Least-norm application: control system
a first-order dynamical system
z(t+1) = azx(t) + bu(t), « is state, u is input
problem: given a,b € R with |a| < 1 and z(0), find
u = (u(0),u(l),...,u(T —1))
such that the values of x(7T"), z(T — 1) are as desired and u has the minimum 2-norm

background: write x(t) recursively, we found that z(t) is linear in u

z(t) = a'z(0) + a7 bu(0) + a'2bu(1) + - - - + bu(t — 1) = a'z(0) + Zat = hu(r
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Least-norm application: control system

formulate the problem of design u to drive the state x(t) as desired

 verify
Cu(0) ]
u(1)
z(T) — a’x(0) ™% @™ - ab b
(T —1)—a™2(0)|  |a™ 20 ™3 - b 0

[I>

m regulating the state is a problem of solving an underdetermined system
m A is full row rank, so a solution of y = Au exists and there are many
m we can try two choices of u:

least-norm solution

any other solution to y = Au

Linear algebra and applications Jitkomut Songsiri
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Least-norm application: control system

setting: a = —0.8,b=0.7,2(0) =0,2(T' — 1) =2,2(T) =3

State

27 | m different sequences of input drive the
I X state to different paths, but the values
Pyl of z(T),x(T — 1) are as desired

2 ‘ ‘ ‘ ‘ ‘ m the least-norm input has the minimum
norm — solved by pinv(A)*y

m the second choice of input is obtained
from A\y in MATLAB, which sets

| many zeros to u (not the least-norm

: : t solution)

—= Input 1: norm = 6.8
F|—= Input 2: norm = 7.17

N o M oA O ®
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Numerical methods in solving linear systems

m solving linear systems by factorization approach
m solving linear systems using softwares

m square system
m underdetermined system
m overdetermined system
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Permutation system

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere

010 010
10 0], |0 01
0 01 1 00

facts: &

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A
PTP =1, s0 Pt = PT (simple)

solving a permuatation system has no cost: Pr =b = x = PTb
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Diagonal system

solve Ax = b when A is diagonal with no zero elements

ail 0
0 a9
0 0
algorithm:
1
)
T3
Tn

cost: n flops

Linear algebra and applications

0 I
0 T2

Gnn Tn

bi /a1

= ba/ag
= b3/a33

= bn/ann
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Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

aijl 0 ce 0 T bl
as1 ase - 0 T2 b2
anl Ap2 -'° Aapp T, bn
algorithm:
I = bl/all
Ty = (by —azi71)/an
r3 = (b3 —az1w1 — azera)/ass
Tn = (bn — Anpl1T1 — Ap2T2 — *** — an,n—lxn—l)/ann

cost: 1 +3+5+---+(2n— 1) = n? flops
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Back substitution

solve Az = b when A is

ai

algorithm:
T,
Tpn—1

Tp—2

x1

cost: n? flops

Linear algebra and applications

upper triangular with nonzero diagonal elements

a1,n—1 ain 1 b1
Gn—1n—1 Qan—1n Tp—1 bn—1
0 Qnpn Tn bn
bn/ann

(bn—l_'an—Lnxn)/an—Ln—l

(bn72_'anflnflxn71_'anflnxn)/an71n72

(b1 — a12x2 — a1323 — -+ — a1pTy) /a1
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices
A= A1Ay--- Ay
then solve (A1 Ay - -+ Ag)x = b by solving k equations
Aiz1 = b, Aszo = 21, ..., Ap_12k_1= Zk_9, Ay = 251

complexity of factor-solve method: flops = f + s
m f is cost of factoring A as A = Aj Ay - A, (factorization step)
m s is cost of solving the k equations for z1, 29, ..zx_1, = (solve step)

m usually f > s
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LU decomposition

for a nonsingular A, it can be factorized as (with row pivoting)
A=PLU

factorization:

m P permutation matrix, L unit lower triangular, U upper triangular

m factorization cost: (2/3)n? if A has order n

m not unique; there may be several possible choices for P, L, U
interpretation: permute the rows of A and factor PTA as PTA = LU

m also known as Gaussian elimination with partial pivoting (GEPP)
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

01 ol O Junr w2
A= [1 0} = LU= [lm 122] [0 U22]

from this example,
m if A could be factored as LU, it would require that lyju1; = a1 =0

m one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular

Linear algebra and applications Jitkomut Songsiri 58 /323



Solving a linear system with LU factor

solving linear system: (PLU)xz = b in three steps
m permutation: z; = PTb (0 flops)
m forward substitution: solve Lzo = 21 (n? flops)
m back substitution: solve Uz = 23 (n? flops)
total cost: (2/3)n® + 2n? flops, or roughly (2/3)n?
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Softwares (MATLAB)

A\b
® square system: it gives the solution: z = A~ 1'b
m overdetermined system: it gives the solution in the least-square sense
m underdetermined system: it gives the solution to Ax = b where there are K nonzero
elements in « when K is the rank of A

rref (A): find the reduced row echelon of A
null(A): find independent vectors in the nullspace of A
[L,U,P] = 1u(A): find LU factorization of A
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Softwares (Python)

numpy . linalg.solve: solves a square system (same for scipy)

numpy . linalg.lstsq: solves a linear system in least-square sense (same for
scipy)
sympy .Matrix: sympy library for symbolic mathematics

scipy.linalg.null_space: find independent vectors in the nullspace of A

scipy.linalg.lu: find LU factorization of A
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Vector notation

n-vector x:
T
x2
xTr =
Tn
m also written as x = (1, 22,...,Ty)

m set of n-vectors is denoted R™ (Euclidean space)
m z;: ith element or component or entry of x
m it is common to denote x as a column vector

w2l =]z x -+ m,] is then a row vector
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Special vectors

standard unit vector in R™ is a vector with all zero element except one element which
is equal to one

1 0 0
€1 = 0 s €9 = 1 N €3 = 0
1 0 1

ones vector is the n-vector with all its elements equal to one, denoted as 1

stacked vectors: if b, ¢, d are vectors (can be different sizes)

a= |c|, or a=(becAd)
d

is the stacked (or concatenated) vector of b, c,d
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Linear combination of vectors
if a1,a9,...,a,, are n-vectors, and aq, ..., a,, are scalars, the n-vector

prai + PBeaz + -+ + Bmam
is called a linear combination of the vectors a1, ..., am,

special linear combinations
m any n-vector a can be expressed as a = aje; + ages + - - - + apey,

m the linear combination with 8y =--- = 3,, = 1 given by a1 + - - - 4+ a,, is the sum
of the vectors

m the linear combination with $; = --- = 8, = 1/m given by (a1 + -+ + an,)/m is
the average of the vectors

m when the coefficients are non-negative and sum to one, ie, 1+ -+ B =1,
the linear combination is called a convex combination or weighted average
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Inner products

definition: the inner product of two n-vectors z,y is
T1y1r + T2y2 + -+ TpYn
also known as the dot product of vectors x,y

notation: 27y

properties &
m (ax)’y = a(zTy) for scalar a
m(z+y)Tz=a"24+9y"2

moly=yTx
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Examples

unit vector: e;fpa = a; the inner product of a vector with e; gives the ith element
of a

sum: 1Ta=a1+as+---+an

average: (1/n)Ta = (a1 +---+ay)/n

sum of squares: a’a =a? +ad+ - +a?

selective sum: let b be a vector all of whose entries are either 0 or 1; then b’ a is
the sum of elements in a for which b, =1

b=(0,1,0,0,1), bTa=as+as

polynomial evaluation: let ¢ be the n-vector represents the coefficients of
polynomial p with degree n — 1

plx) =ci+cx+---+ Cno12" 2 4 cpa™ !

let t be a number and z = (1,¢,2,...,t" 1) then ¢’z = p(t)
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Euclidean norm

loll = /a3 + a3+ +22 = VaTa
properties
m also written ||z||2 to distinguish from other norms
m |az| = |a|||z| for scalar «
m ||z +yl| < |z| + ||yl (triangle inequality)
m||z]| >0and ||z|| =0onlyifz =0
interpretation

m ||z|| measures the magnitude or length of z

m ||z — y|| measures the distance between z and y
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Cluster centroid

given three clusters of data points

6 Clustering
. . it can be shown that the representative is in fact,
ar ! “Wo, e *.%. "1 the centroid of the group
ot " 0:‘ . - -':I'_
2r ¢ ’o:‘{: ¢ el i _ : 2 2
. R zj = argmin, |jz1 —z||*+ -+ [|lany — 2||
. " 1
of ] z; = centroid = — E Z;
J N ?
1€Group j

2+ L]

(the average of all points in group G)
-4 . . . . .
-6 -4 -2 0 2 4 6

the black marker is the representative of a cluster, defined by the point that has the
smallest sum of distance to all points in a cluster
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Inner product and norm of stacked vectors

inner product of stacked vectors

T
T a
Y bl =zTa+yTb+21c
z c
norm of a stacked vector
2
T
vl = lzll®+ Iyl + |zl
z

norm of a distance

|z —ylI?> = (z — )Tz —y) = [lz]* + |ly|* — 22Ty
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Cauchy-Schwarz inequality

for a,b € R"
la”0] < [lall2[[b]l2

example: for ai,...,a, € R with a; + -+ + a,, = 1 show that
ai+a3+---+al>
CS-inequality can be used to verify the triangle inequality
lla+bl* = [|al|* + 2a"b + [[b]* < [lall® + 2[|a][|b]] + [[Bl* = (|a + b]})?
angle between vectors: gives a similarity degree of two vectors

a®db
l[allllo]l

cosf =
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Matrix notation

an m X n matrix A is defined as

all a1 AT
asl ao e aon

A= . . . . , or A= [aij]mxn
Aml Am2 ... Qmn

a;; are the elements, or coefficients, or entries of A

set of m X n-matrices is denoted R"*"

|
n
m A has m rows and n columns (m,n are the dimensions)
m the (4, ) entry of A is also commonly denoted by A;;

|

A is called a square matrix if m =n

Linear algebra and applications Jitkomut Songsiri
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Special matrices

zero matrix: A =0

00 0
00 0
A=,
: 0
00 0
aij:O, forizl,...,m,jzl,...,n
identity matrix: A =1
10 0
01 0
A=
Do 0
00 1

a square matrix with a; = 1,a;; =0 for i # j
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diagonal matrix: a square matrix with a;; = 0 for i # j

aq 0 0

0 a9 0
A=

0 0 ay

triangular matrix: a square matrix with zero entries in a triangular part

upper triangular lower triangular
ai; a2 -+ Qip ap 0 - 0
0 ag - a2 az az -~ 0
A= . o A=
0 0 - am anl Gp2 - Qnp
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Multiplication

product of m X r-matrix A with r» X n-matrix B:
(AB)ij = anbij + aigboj + - - - + aiby; = Z ;g by
k=1

dimensions must be compatible: # of columns in A = # of rows in B
m (AB);; is the dot product of the i row of A and the 5" column of B
m AB # BA in general | (even if the dimensions make sense)
m there are exceptions, e.g., AI = I A for all square A
m A(B+C)=AB+ AC

Linear algebra and applications Jitkomut Songsiri 76 / 323



Matrix transpose

the transpose of an m X n-matrix A is

aijlr az21 . Gml
AT — a2 a2 - Gm2
Qln A2n - Amn
properties &
m AT isnxm
(AT =4
m (aA+B)T =aAT + BT, a€R
m (AB)T = BT AT
m a square matrix A is called symmetric if A = AT je, a;j = aj
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Block matrix notation

example: 2 x 2-block matrix A

for example, if B,C, D, E are defined as

B:E é] 0:[(1) El) ﬂ D=[0 1], E=[-4 1 —1]

then A is the matrix

21 0 1 7
A=13 8 1 9 1
01 41 -1

note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m X n-matrix A in terms of its columns or its rows

bf
by
A:[al ag - an]: .
b
m aj for j =1,2,...,n are the columns of A
-binori:1,2,...,maretherowsofA

example: A = [1 2 1}

4 9 0

alzm, a2:[§], agzm, b= 2 1], b3 =1[4 9 0
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Matrix-vector product

product of m X n-matrix A with n-vector x
1121 + 1222 + ... + A1pTn
a2171 + a22T2 + ... + G2nTy
Ax =
Am1T1 + Am2T2 + - .. + AmnTn
m dimensions must be compatible: # columns in A = # elements in z

if A is partitioned as A = [al as - an], then

Az = a1y + agwo + - + apy

m Az is a linear combination of the column vectors of A
m the coefficients are the entries of x
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Product with standard unit vectors
post-multiply with a column vector

0
ann a2 ... ai]| |0 aik
a1 Q2 ... Q2 : a2k
Aey, = : : i : 1| = . = the kth column of A
Gml OGm2 --- Qmn Umk
_0—
pre-multiply with a row vector
a1l a2 ... Qin
a1 Q2 ... Q2p
Aml Am2 ... Qmn
= [akl aga - a;m] = the kth row of A
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Trace

definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) =ai1 +ag + -+ ann

example:
2 1 4
A=10 -1 5
3 4 6

traceof Ais2—146=7
properties ©
m tr(AT) = tr(A)
m tr(eA + B) = atr(A) + tr(B)
m tr(AB) = tr(BA)
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Inverse of matrices

definition: a square matrix A is called invertible or nonsingular if there exists B s.t.

AB=BA=1

m B is called an inverse of A
m it is also true that B is invertible and A is an inverse of B
m if no such B can be found A is said to be singular

assume A is invertible

m an inverse of A is unique
m the inverse of A is denoted by A~!
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Facts about invertible matrices

assume A, B are invertible

facts &
m (aA)~t = a 1AL for nonzero a
m AT is also invertible and (A1)~ = (A~1)T
m AB is invertible and (AB)~! = B~1A~!
m (A+B)t#£ A+ B!

¥ Theorem: for a square matrix A, the following statements are equivalent
A is invertible
Az = 0 has only the trivial solution (z = 0)
the reduced echelon form of A is [
A is invertible if and only if det(A) # 0
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Inverse of 2 x 2 matrices

the matrix

is invertible if and only if

and its inverse is given by

example:

_12 1 -1 _
[ ]-

|~
| ——
= W

Linear algebra and applications Jitkomut Songsiri
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Elementary matrices

Definition: a matrix obtained by performing a single row operation on the identity
matrix I, is called an elementary matrix

examples:

1 00
01 0 add k times the first row to the third row of I3
k0 1

10 . .

[O kz] multiply a nonzero k with the second row of I
1 00
0 01 interchange the second and the third rows of I3
010

an elementary matrix is often denoted by E
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Inverse operations
row operations on E that produces I and vice versa

I — F

E—1T

add k times row ¢ to row j
multiply row i by k # 0

add —k times row ¢ to row j

multiply row i by 1/k

interchange row ¢ and j

interchange row ¢ and j

E =

Linear algebra and applications

1
0
k

0
1
0

> O
[

= o O

0
0
1

—

1 00
0

Jitkomut Songsiri

1 00

S O =

S = O

_= o O
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Facts &

m every elementary matrix is invertible

m the inverse is also an elementary matrix

from the examples in page 87

1
E =

o

Linear algebra and applications

—_

o

o

[an}

O =

— FE
— F
— FE

Jitkomut Songsiri

-1

-1

1 0 0
0 10
~k 0 1
0
0 1/k
100
00 1
010
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Row operations by matrix multiplication

assume A is m X n and E is obtained by performing a row operation on I,
E A = the matrix obtained by performing this same row operation on A

example:
1 2 3
A=10 1 -1
11 0

m add —2 times the third row to the second row of A

1 0 O 1 2 3
E=1]01 -2 FA=|-2 -1 -1
0 0 1 1 1 0

Linear algebra and applications Jitkomut Songsiri 89 /323



m multiply 2 with the first row of A

2 00 2
E=1]|01 0 EA= |0
0 0 1 1
m interchange the first and the third rows of A
001 1
E=1]0 1 0 EFA= |0
1 00 1

Linear algebra and applications Jitkomut Songsiri
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Inverse via row operations

assume A is invertible

m A is reduced to I by a finite sequence of row operations
E17E27"'7Ek

such that
Ep---BEyE1A=1

m the reduced echelon form of A is I

m the inverse of A is therefore given by the product of elementary matrices

AV =E---FyFy
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Example
write the augmented matrix [A | I]

2 4 3|1 00
1 2 1|10 10
1 0 4/0 0 1
and apply row operations until the left side is reduced to [
9Ry 4+ Ry — R, 0 0 1|1 -2 0
"Ry 4+ Re >R 1 2 10 1 O
S 0 -2 30 -1 1
1 2 10 1 0
Ry & Ry 0 0 1j1 =2 0
0 -2 3(0 -1 1
1 2 1 1 0
—3R2+ R3 — R3 0 0 11 =220
0 -2 0/-3 5 1
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1 2 110 1 0
R3/(—2)—>R3 0 0 1]1 -2 0
o1 0l3 -f -
1 2 110 1 0
Ry <+ R3 01 0[5 -3 —3
0 0 1|1 -2 0
1 0 1/-3 6 1
—2Ry + Ry — Ry o103 -3 -4
00 1|1 -2 0
1 0 0|—-4 8 1
~R3+ R — Ry o103 -3 -4
00 1|1 =2
the inverse of A4 is
-4 8 1
3 _5 _1
2 2 2
1 -2 0
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Inverse of diagonal matrix

al 0 0

0 a9 0
A=

0 0 an

a diagonal matrix is invertible iff the diagonal entries are all nonzero
aiﬁéO, i:1,2,...,n

the inverse of A is given by

1/a;, 0 -+ 0
= 0 1/ag -~ 0
0 - 0 1/an

the diagonal entries in A~! are the inverse of the diagonal entries in A
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Inverse of triangular matrix

upper triangular lower triangular
aip a2 -t Gy a; 0 - 0
A 0 CL'22 © Qgn e az; az -+ 0
0 0 .- Ann apl Ap2 -+ Gpp
aijZOfOFiZj aij:0fori§j

a triangular matrix is invertible iff the diagonal entries are all nonzero
aiﬁéo, V’i:1,2,...,n

m product of lower (upper) triangular matrices is lower (upper) triangular

m the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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Inverse of symmetric matrix

symmetric matrix: A = AT

ESY
m for any square matrix A, AAT and AT A are always symmetric
m if A is symmetric and invertible, then A~! is symmetric
m if A is invertible, then AAT and AT A are also invertible

for a general A, the inverse of AT is (A~1)7 please verify &
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Determinants
the determinant is a scalar value associated with a square matrix A
commonly denoted by det(A) or |A]
determinants of 2 x 2 matrices:

a b

det [c d

]:ad—bc

determinants of 3 x 3 matrices: let A = {a;;}

a1l a2 ais
det (a1 a2 a23| = ar1a22a33 + ai2a23a31 + a13021032
azr asz2 as3

— (as1a22a13 + agzaz3a11 + aszazaiz)
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How to find determinants

for a square matrix of any order, it can be computed by
m cofactor expansion
m performing elementray row operations

Linear algebra and applications Jitkomut Songsiri
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Minor and Cofactor

Minor of entry a;;: denoted by M;;

m the determinant of the resulting submatrix after deleting the ith row and jth
column of A

Cofactor of entry a;;: denoted by Cj;
m Cyj = (1)) M,

example:
3 1 -2 -
A=15 0 2|, My= =4, Co3=(-1)C)My3 =4
1 -1 2 -l
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Determinants by Cofactor Expansion

Theorem: the determinant of an n x n-matrix A is given by

det(A) = a1;C1j + ag;Coj + -+ + aniChpj
det(A) = a;1Cin + apCis + -+ ainCip

regardless of which row or column of A is chosen

example: pick the first row to compute det(A)

3 1 =2
A = |5 0 2], det(A)=a11C11+ a12Ci2 + a13C13
1 -1 2
| 02 520 . |5 0
det(4) = 3(-02| O 2 leaep| 0 2 et 0 O
8

= 3@+ (=1D®) =2(1)(=5) =
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Basic properties of determinants

¥ let A, B be any square matrices
det(A) = det(AT)
if A has a row of zeros or a column of zeros, then det(A) =0
det(aA) = " det(4), a#0
If A has two rows (columns) that are equal, then det(A) =0
det(A + B) # det(A) + det(B) !
@ det(AB) = det(A) det(B)
det(A™1) =1/ det(A)
B A is invertible if and only if det(A) # 0
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Basic properties of determinants

suppose the following is true
m A and B are equal except for the entries in their kth row (column)

m C is defined as that matrix identical to A and B except that its kth row (column)
is the sum of the kth rows (columns) of A and B

then we have
det(C') = det(A) + det(B)

example:
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Determinants of special matrices

m the determinant of a diagonal or triangular matrix is given by the product of the
diagonal entries

m det(I) =1

(these properties can be proved from the def. of cofactor expansion)
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Determinants under row operations

m multiply k£ to a row or a column

ka1 kaiz kais a1 a2 a13
a1 azx as |=k| ax ax as
azy azx  ass azy asz as3

m interchange between two rows or two columns

G21 Q22 A23 ai;p aiz a3
ailp G2 @13 | = —| a21 dagz2 dasg3
a31 az2 as3 aszy asz2 ag3

m add & times the ith row (column) to the jth row (column)

ain +kagr a1z + kaza  aiz + kags ain a2
a21 a22 a23 = | a21 0a22
asi a32 as3 a3z1  a32
Linear algebra and applications Jitkomut Songsiri
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Example

B is obtained by performing the following operations on A

Ry +3Ri — Ry, R3+< Ry, —4R1 — R,

2 3 -2
A=[3 1 0| = det(B)=(-4) (=1)-1-det(A)
-3 -3 3

the changes of det. under elementary operations lead to obvious facts ™
m det(ad) = a"det(4), a#0
m If A has two rows (columns) that are equal, then det(A) =0
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Determinants of elementary matrices
let B be obtained by performing a row operation on A then

B=FEA and det(B)=det(FA)

k 0
E = |0 1

E = (01
0 0

0

e}

. det(B) = kdet(4) (det(E) = k)

, det(B) = —det(A) (det(E)=—1)

, det(B) = det(4)  (det(E) =1)

conclusion: det(EA) = det(FE) det(A)

Linear algebra and applications

Jitkomut Songsiri 106 / 323



Determinants of product and inverse

¥ let A, B be n x n matrices
m A is invertible if and only if det(A) # 0
m if Ais invertible, then det(A~!) = 1/det(A)
m det(AB) = det(A) det(B)
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Adjugate formula

the adjugate of A is the transpose of the matrix of cofactors from A

Cnu Cau -+ Cp
adj(A) — C'.12 C.22 0?12
Cin Con - Cun
if A is invertible then )
AT = G M)

Proof.

m the cofactor expansion using the cofactors from different row is zero
a;1Ck1 + ai2Cr2 + ... + a4inCrp = 0, fori#k

s Aadj(A) = det(A) - I
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Cramer's rule
consider a linear system Ax = b when A is square

if A is invertible then the solution is unique and given by
r=A"1b
each component of = can be calculated by using the Cramer’s rule

Cramer’s rule
_ A _ A9 |As|

Tl = , Ig = Yy e, XTp =
Al Al "4
where A; is the matrix obtained by replacing b in the jth column of A

(its proof is left as an exercise)
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Example

3 1 =2 2
A=15 0 2|, b=]1
1 -1 2 2
since det(A) = 8, A is invertible and the solution is
2 0 2 2] 1
;zc:A—lbzg -8 8 —16] 1| = |-5
-5 4 5] 2] -2
using Cramer's rule gives
2 1 =2 1 3 2 =2 1 3 1 2
r] = = 1 0 2 s To = g 5 1 2 s Tr3 = g 5} 0 1
2 -1 2 1 2 2 1 -1 2
which yields
xr1 = 1, Tro = —5, T3 = —2
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Pseudo-inverse (Penrose Theorem)
one can have a notion of 'inverse’ for a non-square matrix

Penrose’s Theorem: given A € R™*", there is exactly one n x m matrix B such that

ABA = A and BAB =B
both AB and BA are symmetric

Rm><n

definition: the pseudo inverse of A € is the unique n x m matrix A" such that

AATA = A and ATAAT = At
both AAT and ATA are symmetric
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Pseudo-inverse

consider a full rank matrix A € R™*™ in three cases
m tall matrix: A is full rank < columns of A are LI & AT A is invertible

(ATA)TATYA = (ATA) 1 (ATA) =1
the pseudo-inverse of A (or left-inverse) is AT = (AT A)~tAT
m wide matrix: A is full rank < row of A are LI & AAT is invertible
A(AT(AAT)™Y) = (AATY(AATY L =1

the pseudo-inverse of A (or right-inverse) is AT = AT(AAT)™!

= A is full rank & A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A~!

& the pseudo inverses of the three cases have the same dimension 7
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Example

0 9 1 0 -2/9
A:[—z 1 —2}’ A= AT(AAT) ™ = 12/5 1/9
1/5 —2/9
2 1 2/9 2/9 1/9
_ _ T T AN—1 AT _ |—
A= _21 01 , Al =ATA) AT = 12 12 0

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse

Linear algebra and applications Jitkomut Songsiri 113 /323



Softwares (MATLAB)

eye(n) creates an identity matrix of size n
inv(A) finds the inverse of A (not used for large dimension)
A\eye(n) finds the inverse of a square matrix A

pinv(A) gives a pseudoinverse of A, denoted by Af
m if A is square, a pseudoinverse is the inverse of A
m if Aistall, AT = (ATA)~1AT is a left inverse of A
m if Ais fat, AT = AT(AAT)~! is a right inverse of A
x = pinv(A)*b solves the linear system Ax =b
m if Aissquare, x = A~ b
m if A is tall, x is the solution to the least-square problem: minimize | Az — b||2
m if A is fat, z is the least-norm solution that satisfies Az = b

@ det(A) finds the determinant of A
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Softwares (Python)

numpy . eye creates an identity matrix
numpy.linalg.inv finds the inverse of a square matrix A
numpy.linalg.pinv gives a pseudoinverse of A
numpy.linalg.det find the determinants of A
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Eigenvalues and eigenvectors
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Linear Independence

Definition: a set of vectors {v1,ve,...,v,} is linearly independent if
oy toagve+ - t+apv,=0— a1 =as=---=a, =0

equivalent conditions:

m coefficients of ajv1 + v + - - - + @y, are uniquely determined, i.e.,
101 + QU + - -+ Uy = Pror + Povg + - -+ By

implies a, = B, for k =1,2,...,n

m no vector v; can be expressed as a linear combination of the other vectors
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Examples

1 3
m (2|, [1]| areindependent
_1_ _0_
1] [3] [—1]
m |2|,[1],| O] areindependent
1] (0] | 1]
1] [3] [-1] [4
m (2],]1],] 0 ],]|2]| are not independent
1] [0 L 1] [O
1] [3] 2]
m (2]|,[1],]|—=1]| are not independent
1] (0] |-1]
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Linear span

Definition: the linear span of a set of vectors

{Ul,vz, ceey Un}

is the set of all linear combinations of v1,...,v,

span{vy, va, ..., v} = {a1v1 + agva + -+ + apvy | ag, ..

example:

span 0],|1 is the hyperplane on z1x5 plane

Linear algebra and applications Jitkomut Songsiri
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Eigenvalues
) € Cis called an eigenvalue of A € C"*" if
det(\ — A) =0

equivalent to:

m there exists nonzero x € C" s.t. (A — A)x =0, ie,
Ax = Mz

any such z is called an eigenvector of A (associated with eigenvalue \)
m there exists nonzero w € C" such that

wl'A = M’
any such w is called a left eigenvector of A
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Computing eigenvalues

m X(A) =det(A — A) is called the characteristic polynomial of A
m X(\) =0 is called the characteristic equation of A

m eigenvalues of A are the root of characteristic polynomial
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Computing eigenvalues

m X(A\) = det(M — A) is called the characteristic polynomial of A
m X(\) =0 is called the characteristic equation of A

the characteristic equation provides a way to compute the eigenvalues of A

5 3
=% 4
XM)—‘Ag5 Xf4‘:A2—A—2:O

solving the characteristic equation gives

A=2 -1
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Computing eigenvectors

for each eigenvalue of A, we can find an associated eigenvector from
(M —-A)x=0
where x is a nonzero vector

for A in page 123, let's find an eigenvector corresponding to A = 2

()\I—A)az:[_ﬁ?) _63] [ij:o = z1+x3=0

the equation has many solutions, so we can form the set of solutions by

e o= 3]} { (3]

this set is called the eigenspace of A corresponding to A = 2
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Eigenspace

eigenspace of A corresponding to A is defined as the nullspace of AT — A
N — A)
equivalent definition: solution space of the homogeneous system

(M — Az =0

m an eigenspace is a vector space (by definition)
m 0 is in every eigenspace but it is not an eigenvector
m the nonzero vectors in an eigenspace are the eigenvectors of A
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from page 124, any nonzero vector lies in the eigenspace is an eigenvector of A, e.g.,

e=[-1 1]"
same way to find an eigenvector associated with A = —1
[-6 =3] [z1] _ B
()\I—A>$—_6 3][372]_0 = 221 +29=0
so the eigenspace corresponding to A = —1 is
e |le=] " = span 1
~—2a | TP 2

and z = [1 —2}T is an eigenvector of A associated with A = —1
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Properties

m if Aisn xn then X()\) is a polynomial of order n
m if A is n x n then there are n eigenvalues of A
m even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

-2 0 1
A:E _21] A=1|-6 -2 0
19 5 —4

if A and X are real, we can choose the associated eigenvector to be real
if A is real then eigenvalues must occur in complex conjugate pairs

if x is an eigenvector of A, sois ax for any a € C, a # 0

an eigenvector of A associated with A lies in N(AI — A)
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Important facts

denote \(A) an eigenvalue of A
AMaA) = aA(A) for any a € C

tr(A) is the sum of eigenvalues of A

det(A) is the product of eigenvalues of A
m A and A7 share the same eigenvalues
A(AT) = A(4)

A(A™) = (A(A))™ for any integer m

m A is invertible if and only if A = 0 is not an eigenvalue of A

Linear algebra and applications Jitkomut Songsiri
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Matrix powers

the mth power of a matrix A for a nonnegative integer m is defined as

m

(the multiplication of m copies of A)
and A is defined as the identity matrix, i.e., A =1

& Facts: if A is an eigenvalue of A with an eigenvector v then

m \" is an eigenvalue of A™

m v is an eigenvector of A™ associated with A\™
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Invertibility and eigenvalues
A is not invertible if and only if there exists a nonzero x such that
Ar =0, or Arxr=0-z
which implies 0 is an eigenvalue of A
another way to see this is that
Ais not invertible <= det(4)=0 <= det(0-1—A)=0

which means 0 is a root of the characteristic equation of A

conclusion & the following statements are equivalent
m A is invertible

= NV(A) = {0}

m A =0 is not an eigenvalue of A
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Eigenvalues of special matrices

diagonal matrix:

di 0 0
0 do 0
D= .
0 O dn
eigenvalues of D are the diagonal elements, i.e., A =di,do,...,d,
triangular matrix:
aip a2 - Ay aj; 0
0 ag - a2 a a2
U - L =
0 0 A ann anl an?

eigenvalues of L and U are the diagonal elements, i.e., A = a1, ..

Linear algebra and applications Jitkomut Songsiri
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Similarity transform
two n X n matrices A and B are said to be similar if
B=T1AT
for some invertible matrix T’

T is called a similarity transform

& invariant properties under similarity transform:
m det(B) = det(A)
m tr(B) = tr(A4)

m A and B have the same eigenvalues

det(M — B) = det\T'T — T YAT) = det(M\ — A)
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Diagonalization

an n X n matrix A is diagonalizable if there exists T" such that
T'AT =D

is diagonal
m similarity transform by T diagonalizes A

m A and D are similar, so the entries of D must be the eigenvalues of A

A O - 0
0 X 0
D=1 . )
0 0 - A\,

m computing A¥ is simple because A*¥ = (TDT—1)k = TDFT!
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Eigenvalue decomposition
if A is diagonalizable then A admits the decomposition

A=TDT !

m D is diagonal containing the eigenvalues of A
m columns of 1" are the corresponding eigenvectors of A
m note that such decomposition is not unique (up to scaling in T')

Theorem: A € R"*" is diagonalizable if and only if all n eigenvectors of A are
independent

m a diagonalizable matrix is called a simple matrix

m if A is not diagonalizable, sometimes it is called defective
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Proof (necessity)
suppose {v1,...,v,} is a linearly independent set of eigenvectors of A

Avi:)\ivi izl,...,n

we can express this equation in the matrix form as

M O - 0
A[vl vy - vn]:[vl vy - Un] O >\:2 ' 0
0 0 .. A
define T = [Ul vy - vn] and D = diag(\y,...,\,), so
AT =TD
since T is invertible (v1, ..., v, are independent), finally we have
T'AT =D
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Proof (sufficiency)
conversely, if there exists T = [vl e vn} that diagonalizes A

T7YAT = D = diag(\1,..., \n)

then AT =TD, or
A'I}Z’Z)\Z‘Ui, i=1,...,n

so {v1,...,v,} is a linearly independent set of eigenvectors of A

Linear algebra and applications Jitkomut Songsiri
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Example
find T that diagonalizes

N

Il
— N
S W O
=~ N

the characteristic equation is
det(A\ — A) =X — 110\ 439\ — 45 =0

the eigenvalues of A are A =5,3,3
an eigenvector associated with \; = 5 can be found by

1 0 —17 [= r =23 =0
Gb-I-Azx=|-2 2 =2| |z =0 = r9 — 223 =0
-1 0 1 I3

x3 is a free variable
. . T
an eigenvector is v; = [1 2 1]
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next, find an eigenvector associated with Ao = 3

-1 0 -1 [z

T1+x3=0
BIT—-Az=|-2 0 2| |z2| =0 =
1 0 —1| |3 X9, x3 are free variables
the eigenspace can be written by
0 -1 0 -1
z|x=zo |1| +23]| 0 = span 1{,]10
0 1 0 1

hence we can find two independent eigenvectors

0 -1
vo=|1], wv3=10
0 1

corresponding to the repeated eigenvalue Ao = 3
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easy to show that vy, v9, v3 are linearly independent

we form a matrix T' whose columns are vy, vo, Uy,

10 -1
T=1[v vo v3)=12 1 0
10 1

then vy, vo,v3 are linearly independent if and only if T is invertible
by a simple calculation, det(7") = 2 # 0, so T is invertible

hence, we can use this T' to diagonalize A and it is easy to verify that

5 0 0
T'AT =10 3 0
00 3
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Not all matrices are diagonalizable

example: A = {8 (1)]

characteristic polynomial is det(\] — A) = s2, so 0 is the only eigenvalue
eigenvector satisfies Az =0 -z, i.e.,
1 Tro = 0
b o]0 =
L2 z1 is a free variable

x

0] where x1 # 0

so all eigenvectors has form = = [

thus A cannot have two independent eigenvectors
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Distinct eigenvalues

Theorem: if A has distinct eigenvalues, i.e.,
N#N, iF]

then a set of corresponding eigenvectors are linearly independent
which further implies that A is diagonalizable
the converse is false — A can have repeated eigenvalues but still be diagonalizable

example: all eigenvalues of I are 1 (repeated eigenvalues) but I is diagonal
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Proof by contradiction

assume the eigenvectors are dependent
(simple case) let Az, = A\pxg, k=1,2

suppose there exists a1, g # 0
a1x1 + asxrs =0

multiplying (1) by A: a1 Aiz; + asdoza =0
multiplying (1) by A1 a1 iz + aghiza =0
subtracting the above from the previous equation
052()\2 — )\1)1’2 =0
since A1 # A2, we must have as = 0 and consequently ai; = 0
the proof for a general case is left as an exercise

Linear algebra and applications Jitkomut Songsiri
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Algebraic and Geometric multiplicities

algebraic multiplicity of an eigenvalue \g is defined as the multiplicity of the root A
of the characteristic polynomial

example: the characteristic polynomial of A is
X)) = (A=A = X)X = A3)°
the multiplicity of A1, Ao and A3 are 1,2 and 5 respectively
geometric multiplicity of an eigenvalue Ay is defined as
dim N (A I — A)
(the dimension of the corresponding eigenspace)

example: A = I,; the geometric multiplicity of 1 is n
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let X be an eigenvalue of a matrix A (n x n)

Theorem &

m the geometric multiplicity of A is the number of linearly independent eigenvectors
associated with A

m algebraic and geometric multiplicities need not be equal

m let r be the algebraic multiplicity of A

dimN(A —A) <r

(the geometric multiplicity is less than or equal to the algebraic multiplicity)

m A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is
equal to the algebraic multiplicity
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Matrix Power

the mth power of a matrix A for a nonnegative m is defined as

—y
k=1
and define A9 =T
property: ATA% = ASA”T = ATTS
a negative power of A is defined as
AT = (AT

n is a nonnegative integer and A is invertible
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Matrix polynomial
a matrix polynomial is a polynomial with matrices as variables

p(A) =aol + a1 A+ -+ a, A"

2 1
for example A = [O 1]

01
2 -3
~ o 11

Fact & any two polynomials of A commute, i.e., p(A)q(A) = q(A)p(A)

o-swese <oy Yaf) 2ol 2
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Matrix exponential via diagonalization

suppose A is diagonalizable, i.e., A =T 'AT <= A=TAT!

where T = [vl
then we have A¥ = TAFT—1

vn], i.e., the columns of T are eigenvectors of A

thus diagonalization simplifies the expression of a matrix polynomial

p(A) = all + a1 A+ +a, A"
Tp(A)T*
where
p()q) 0
p(A) = 0 p(%\2)
0 0

Linear algebra and applications Jitkomut Songsiri
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Eigenvectors of matrix polynomial

if A and v be an eigenvalue and corresponding eigenvector of A then
m p(A) is an eigenvalue of p(A)
m v is a corresponding eigenvector of p(A)

Av=X v = A2v=Nv=X v ... =— Afp=)\Fy

thus
(apl + a1 A+ -+ anA")v = (apv + a1 A + - -+ + a, A")v

which shows that
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Matrix exponential

generalize the exponential function of a scalar

2 1133

T
=1+2x + — + Bl + -
to an exponential function of a matrix
define matrix exponential as
A2 A3 2 Ak
=I+A + — +t =+ = hill
3! k!
k=0
for a square matrix A
the infinite series converges for all A
Linear algebra and applications Jitkomut Songsiri

149 / 323



Example

example: A = B (1)]

find all powers of A

ﬁ:BH’AEBéy”’M:Ahm:m”'

so by definition,

>N AP > AF 1 0] ~=1711 e e—1

A _ _ _ - _

DI A hJ*kao] b 1]
k=0 k=1 k=1

never compute e by element-wise operation !
11
A (& €
e
# [60 60}
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Eigenvalues of matrix exponential

& if A and v be an eigenvalue and corresponding eigenvector of A then

m e* is an eigenvalue of e

m v is a corresponding eigenvector of e
since e” can be expressed as power series of A:
A% A3

=T A+

multiplying v on both sides and using A¥v = A*v give

eAv =utAvt Ay g A
=(1+a+ 3 +4+ )0
:€>\U

Linear algebra and applications Jitkomut Songsiri
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Properties of matrix exponential

mel =17
w ATB £ A B

m if AB= BA, ie., A and B commute, then ¢At8 = ¢4 . B
- (eA)fl —e A

¥ these properties can be proved by the definition of e
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Computing e via diagonalization
if A is diagonalizable, i.e.,

T7YAT = A = diag(\1, Ao, ..., \p)
where \;’s are eigenvalues of A then e has the form

e =Tt

m computing e is simple since A is diagonal
m one needs to find eigenvectors of A to form the matrix T'

m the expression of e follows from

AR S (TAT YD S TAFT!
I N

e’ = —
k! k!
k=0 k=0 k=0

=TT

m if A is diagonalizable, so is e
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Example

1 10
example: compute f(A) = e’ given A= [0 2 1
0 00
the eigenvalues and eigenvectors of A are
1 1 1
)\1:1,1)1: 0 5 /\2:2,2)2: 1 s )\3:0,’03: -1
0 0 2
form T'= [v1 v2 wv3] and compute e = TeAT !
11 1]fe 0 Of 1 -1 -1 e e2—e (e2—2e+1)/2
ed=10 1 -1/ |0 ¢ o[ |0 1 1/2=1]0 € (e —1)/2
0 0 2 0 0 1/(0 0 1/2 0 0 1
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Applications to ordinary differential equations

we solve the following first-order ODEs for ¢ > 0 where z(0) is given

scalar: z(t) € R and a € R is given

z(t) = ax(t)
solution: z(t) = e¢®x(0), for t > 0
vector: z(t) € R" and A € R™" is given

z(t) = Ax(t)

deAt
solution: xz(t) = e**x(0), for t > 0 (use o Aett = A A)
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Applications to difference equations

we solve the difference equations for t = 0,1, ... where z(0) is given

scalar: z(t) € R and a € R is given
x(t+1) =ax(t)

solution: z(t) = a’x(0), fort =0,1,2,...

vector: z(t) € R" and A € R"*" is given
x(t+1) = Ax(t)

solution: x(t) = Az(0), for t =0,1,2,...
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Example 1
solve the ODE

solution: define )

A [~T1 t} Py [y(t)

T (t y(t))

write the equation into the vector form z(t) = Ax(¢
z(t) =
© =[] = [

_ (1) _ 0 1
o 6LE1()—|—LE2() o _6 1

the initial condition is .
y(0)] _ 1
0

Linear algebra and applications
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Example 1

thus it is left to compute e

-]

the eigenvalues and eigenvectors of A are
1 1
= —2 = = =
A1 ;U1 [_2} , A2 =3, v2 [3]
all eigenvalues are distinct, so A is diagonalizable and

A O
A Atmp—1 1
et = reMT T:[vl vg], A:[O )\J

a1 1) [e® 0]1[3 -1
© Tl23/lo e&t5l2 1

Jitkomut Songsiri 158 / 323
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Example 1

the closed-form expression of e is

eAt B 1 |: 36_2t + 263t 76—2t + e3t:|

5 | =62 + 6e3t 2e2t 4 33t

the solution to the vector equation is

1 36—2t +263t —6_2t +€3t 1
=(t) = EAtm(O) - 5 |:—6€2t +6e3 2e72t 4 3e3t| |0

1 [ e 2t 4 2¢3t }

5 | —6e 2 + 6

hence the solution y(t) can be obtained by

yt)=z1(t) = [1 0] x(t) == (3e > +2e%), t>0

[
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Example 2

solve the difference equation

y(t+2) —yt+1)—6y(t) =0, y(0)=1,y(1)=0

SO | R
write the equation into the vector form z(t + 1) = Ax(t)
z(t+1) = [ Et+ 23] [ q)ﬁ%y(t)}
(

i) t)

[6w1(t)+x2(t)] [2 ﬂ x(t)

solution: define

the initial condition is
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Example 2

thus it is left to compute A!
01
A=l

the eigenvalues and eigenvectors of A are

)\1 = _27 U1 = |:_12:| ) )\2 = 37 U2 = |:;:|

all eigenvalues are distinct, so A is diagonalizable and

At =TAT™Y, T=[un v, A:[)‘l O]

0 A2
S | A
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Example 2
the closed-form expression of A? is
L[ 2y 3 (-
5 2(3t+1) + 3(_2)t+1 3t+1 _ (_2)t+1

fort=0,1,2,...
the solution to the vector equation is

Y LT 2(3) +3(—2) 3dF—(=2) 11
z(t) = A'z(0) = 5 |: (3t+1) +3(_2)t+1 gt+l (_Q)t-H} [0]
1 2(3Y) +3(-2)!
- g [2(315—1-1) +3(_2)t+1}
hence the solution y(t) can be obtained by

y(t) = 21() = % (2(3") +3(=2)"), t=0,1,2,...

Linear algebra and applications Jitkomut Songsiri 162 / 323



Softwares (MATLAB)

[V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix V
whose columns are the corresponding eigenvectors
m the eigenvectors are normalized to have a unit 2-norm
m eigenvalues are not necessarily sorted by magnitude

eigs(A) returns the 6 largest magnitude eigenvalues
expm(A) computes the matrix exponential e
exp(A) computes the exponential of the entries in A
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Softwares (Python)

D,V = numpy.eig(A) computes the eigenvalues and eigenvectors of A
numpy.linalg.matrix_power (A, n) computes the n power of A
scipy.linalg.expm(A) computes the matrix exponential of A
numpy . exp (A) computes the exponential of the entries of A
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Special matrices and applications
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Special matrices

orthogonal matrix

projection matrix

permutation matrix

symmetric matrix

positive definite matrix
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Orthogonal matrix

Ran

a real matrix U € is called orthogonal if

vt =vTu =1

properties:
m an orthogonal matrix is special case of unitary for real matrices
m an orthogonal matrix is always invertible and U~ = U7
m columns vectors of U are mutually orthogonal

m norm is preserved under an orthogonal transformation: ||Uz||3 = |||/

L 1 -1 cosf —sind
V21 1)’ sinf cosf

example:
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Applications

rotation: in R3, rotate a vector z by the angle 6 around the z-axis

cos@ —sinf 0Of |z
w= [sinf cosf 0| |y
0 0 1{ |z

[1>

U

NI SO

where U is orthogonal
eigenvectors of symmetric matrices are orthogonal (more detail later)
Q@ in QR decomposition is orthogonal

orthogonal matrices are used to whiten the data (transform correlated random
vector to uncorrelated random vector)

discrete Fourier transform (DFT): y = Wx where W is unitary (equivalence of
orthogonal matrix in complex)
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Unitary matrix

a complex matrix U € C™*" is called unitary if

U'U=U0U"=1,
example: let z = e~

AR
i27/3
_ 1 Pl 12 _ 1 ! —i;r/S —izlm/:g
U_ﬁ 1 ;2 24 _% 1 Zfi47r/3 Zfi8ﬂ/3
facts: &

® a unitary matrix is always invertible and U~ = U*

m columns vectors of U are mutually orthogonal
m 2-norm is preserved under a unitary transformation: |Uz|3 = (Ux)*(Uz) = ||z||3
Linear algebra and applications
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Example: Discrete Fourier transform (DFT)

DFT of the length-N time-domain sequence x[n] is defined by
| N
X[kl =— Y zple /N og<k<N-1
= 5 2l <k<

—i2n /N

define z = ¢ , we can write the DFT in a matrix form as

X[0] 11 TR 1 2[0]
X[1] 1 2t 22 . ZN-1 z[1]
X2 | = \; T 2[2]
. N
X[V - 1], 1 N1 20D L WD | v — 1))

or X = Dx where D is called the DFT matrix and is unitary (.. x = D*X)
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Unitary property of DFT

the columns of DFT matrix are of the form:
o = (1/\/ﬁ) [1 e—i2mk/N  —i2mk2/N e—ika(N—l)/N]T

use (¢, o) = ¢;.¢ and apply the sum of geometric series:

N—-1 _i2n(k=1)
_ 1 S eiznlktn/N _ 1 1=
<¢l7 ¢k> N o € N 1 — ei2n(k—=l)/N

the columns of DFT matrix are therefore orthogonal

1, fork=1+rN, r=0,1,2,...

(01, o) = {0, for k # 1
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Projection matrix

P € R™ " is said to be a projection matrix if P2 = P (aka idempotent)

m P is a linear transformation from R" to a subspace of R", denoted as S
m columns of P are the projections of standard basis vectors and S is the range of P
m if P is applied twice on a vector in S, it gives the same vector

examples: identity and
L0 /2 172 13 =6 I—X(XTX)7'XT (in regression)
0 0| |1/2 1/2]" |1 =2|°
properties: &
m eigenvalues of P are all equal to 0 or 1

m [ — P is also idempotent
m if P # 1, then P is singular
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Orthogonal projection matrix

a matrix P € R™*" is called an orthogonal projection matrix if
pP?=p=pT

properties:
m P is bounded, i.e, ||Pz| < |z

|Pz||3 = 2T PT Pz = 2T P*z = 27 Px < ||Px|||z||
m if P is an orthogonal projection onto a line spanned by a unit vector u,
P =uu®
(we see that rank(P) = 1 as the dimension of a line is 1)

m another example: P = X (X7 X)™'XT for any matrix X — (in regression)
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Permutation

a permutation matrix P is a square matrix that has exactly one entry of 1 in each row
and each column and has zero elsewhere

010 010
10 0], |0 01
0 01 1 00

facts: &

P is obtained by interchanging any two rows (or columns) of an identity matrix
PA results in permuting rows in A, and AP gives permuting columns in A
PTP =1, s0 Pt = PT (simple)

the modulus of all eigenvalues of P is one, i.e.,

Ai(P)| =1
a multiplication of P with vectors or matrix has no flop count (just swap
rows/columns)
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Linear function

given w € R" and let x € R™ be a vector variable
a linear function f : R™ — R is given by
f(z) = wle = wixy + wexg + - -+ + Wny
(% review its linear properties, i.e., superposition)
an affine function is a linear function plus a constant: f(z) = w’z +b

| % = w; gives the rate of change of f in x; direction

m the set {z | w2z +b = constant } is a hyperplane in R" with the normal vector w

m linear functions are used in linear regression model and linear classifier
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Energy form

given a (real) square matrix A, an energy form is a quadratic function of vector x:

f:R" =R, f(x)=2TAz= Z Z aijTiT;
J

7

m 27 Az is the same as the energy form using (A + AT)/2 as the coefficient because

T 2T (A+ ATz

zl Az = (27 Az) 5

. T _AT X
m using A = % + 4 2‘4 , we can later on assume that an energy form requires

only the symmetric part of A

m reverse question: given an energy form, can you determine what A is ?

CL‘% + 21‘% + 31‘% — 2o+ 2w0x3 2 2T Az
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Energy form and completing the square

recall how to complete the square:

22 + 322 + 14z 120 = (21 + Tap)? — 4622

given these matrices, expand the energy form and complete the square

4 6 4 6 4 6
A‘[a 13]’ B_[G 9]’ C_[G —4}
m ol Ax =

m ' Br =

m2Cr =
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Quadratic function

given P € R"*" g € R",r € R, a quadratic function f : R™ — R is of the form

f(z)=1/2)2"Pr+q "z +r

m 27 Px is aka an energy form (due to the quadratic form that appears in the
energy/power of some physical variables)
. K . . 1 2 : : 1 2
electrical power = +“R, kinetic energy = §mv , energy stored in spring = ikx
m the contour shape of f depends on the property of P (positive definite, indefinite,
magnitude of eigenvalues, direction of eigenvectors) — as we will learn shortly
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Symmetric matrix

definition: a (real) square matrix A is said to be symmetric if A = AT
notation: A € S”

examples:

[;FT }Z/] with symmetric X, Z, A = E[XXT] (correlation matrix)

& basic facts:
m for any (rectangular) matrix A, AAT and AT A are always symmetric
m if A is symmetric and invertible, then A~! is symmetric
m if A is invertible, then AAT and AT A are also invertible

Linear algebra and applications Jitkomut Songsiri 180 / 323



Properties of symmetric matrix

spectral theorem: if A is a real symmetric matrix then the following statements hold
all eigenvalues of A are real

all eigenvectors of A are orthogonal
A admits a decomposition
A=UDU"

where UTU = UU”T = I (U is unitary) and a diagonal D contains A\(A)
for any z, we have

Auin(A)[|z)3 < 2TAz < Apax(A)|z])3

the first (and second) inequalities are tight when x is the eigenvector corresponding to Amin
(and Amax respectively)
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Proofs

assume Az = Az and ),z could be complex, denote z* = 71

(x"Azx)" = x"A'r =2"Azx =" v = A"z

= (2*\2)* = Az

since z*x # 0, we must have A = \

assume Ax; = Az and Axg = Aozo (now all (A, x;) are real)

ngazl = a:g)\lxlz)\lacgm

= l‘,{AZL‘Q = :L‘IT)\Q."EQ = )\gxlTxg

equating two terms give (A — \o)zd z1 = 0

for simple case, we can assume that \;'s are distinct, so x%xl =0 (z2 L x1)
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Exercises

for z,y € R", are zy”, xa™ yaT symmetric?

for a diagonal matrix D, is D + xzz” symmetric?

if A, B are symmetric, so is A + B?

how many distinct entries in a symmetric matrix of size n?

if A is symmetric and B is rectangular, is BABT symmetric?

@ if A is symmetric and invertible, is A1 symmetric?

find conditions on A, B, C, D so that the block matrix: [A

C D} IS symmetric
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Positive definite matrix
definition: a symmetric matrix A is positive semidefinite, written as A > 0 if

T Az >0, VzeR"
and is said to be positive definite, written as A > 0 if
zT Az >0, for all nonzero z € R"

% the curly = symbol is used with matrices (to differentiate it from > for scalars )

example: A7 = [_11 _11} = 0and Ay = [ 1

-1
1 9 ] > 0 because

1 1| |z
2T Ajx = [xl 332] [_1 1 } [x;] = x% + a:% —2x129 = (21 — 3:2)2 >0

2T Ay = (1 —x2)> + 23>0, Vr#0

exercise: & check positive semidefiniteness of matrices on page 178
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How to test if A = 07

Theorem: A = 0 if and only if all eigenvalues of A are non-negative
(A > 0if and only if A(4) > 0)

Sylvester’s criterion: if every principal minor of A (including det A) is non-negative
then A t 0 proof in Horn Theorem 7.2.5

1

example 1: A = [ 1 _21} > 0 because

m eigenvalues of A are 0.38 and 2.61 (real and positive)
—1

1 9 |7 1 (all positive)

m the principle minors are 1 and ‘

11

example 2: A = [2 9

] > 0 because eigenvalues of A are 0 and 3
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Properties of positive definite matrix

if A > 0 then all the diagonal terms of A are nonnegative

=

if A > 0 then all the leading blocks of A are positive semidefinite
if A =0 then BABT =0 for any B # (exercise)
if A= 0and B> 0, thensois A+ B

[~ ol )
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Gram matrix

for an m x n matrix A with columns a,...,a,, the product G = AT A is called the
Gram matriX Gram matrix is positive semidefinite

Jgrgen Pedersen Gram

T T T
G ATA a2 al a2 a9 st CL2 (0799
z ala; alay -+ ala,

2TGr = 2T AT Az = | Az|?> > 0, Vz

m if A has zero nullspace then Az = 0 <> = 0; this implies that AT A > 0

m let X be a data matrix, partitioned in IV rows as x; 's; we typically encounter

T - -
G=X%=1% ij:l zpzi as the sample covariance matrix
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Exercises

check if each of the following is positive definite

4 1 0
Alz[i ﬂ Ag:[_12 ;)] As= -1 2 2
0 2 3

is a diagonal matrix always positive semidefinite?
for x € R™ and [ is the identify

is I + xzz” positive semidefinite?

is I — zaT positive semidefinite?

is zz” positive semidefinite?
find conditions on a, b, ¢ so that

is positive definite
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Numerical exercises

generate each of these matrices randomly and check its properties

orthogonal: check determinant and eigenvalues

orthogonal projection: check eigenvalues

permutation: check the eigenvalues, its inverse and transpose
symmetric: check eigenvalues and eigenvectors

positive definite: check eigenvalues, eigenvalues of leading diagonal blocks,

relate what you numerically found to the properties of these matrices
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Matrix decomposition
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Decompositions

m LU
m Cholesky
= SVD
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Factor-solve approach

to solve Ax = b, first write A as a product of ‘simple’ matrices
A= A1Ay--- Ay
then solve (A1 Ay - -+ Ag)x = b by solving k equations
Aiz1 = b, Aszo = 21, ..., Ap_12k_1= Zk_9, Ay = 251

complexity of factor-solve method: flops = f + s
m f is cost of factoring A as A = Aj Ay - A, (factorization step)
m s is cost of solving the k equations for z1, 29, ..zx_1, = (solve step)

m usually f > s
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Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

aijl 0 ce 0 T bl
as1 ase - 0 T2 b2
anl Ap2 -'° Aapp T, bn
algorithm:
I = bl/all
Ty = (by —azi71)/an
r3 = (b3 —az1w1 — azera)/ass
Tn = (bn — Anpl1T1 — Ap2T2 — *** — an,n—lxn—l)/ann

cost: 1 +3+5+---+(2n— 1) = n? flops
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LU decomposition (w/o row pivoting)

Theorem: if A can be lower reduced (w/o row interchanged) to a row-echelon matrix
U, then A = LU where L is lower triangular and invertible and U is upper triangular

and row-echelon

m suppose A can be reduced to A -+ E1A — EsF1A — EyEy_1---EsE1A=U
m A=LU where L=E'E;'-- B!

m F; corresponds to scaling operation or R; + aR; — R; for i > j

m E; is lower triangular (and invertible)
n E;l is also lower triangular, hence, L is lower triangular
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Example

2 4 2
find LUforA=|1 1 2
-1 0 2
[1/2 0 0] [2 0 o0 [ 2 1]
R1/2, Ei=10 1 o|, Ef'=|0 1 of, =1 1 2
o o0 1 0 0 1 -1 0 2]
1 0 0] 1 0 O 1 2 1
Ro— Ry = Ra, BEa=|-1 1 of, Ej'=|[1 1 of, =|0 -1 1
0o o 1] 0 0 1 -1 0 2
1 0 0 1 0 0 1 2 1]
R3+Ry - Rs, Es3=|0 1 o0, By'=]0 1 of, =]0o -1 1
1 0 1 -1 0 1 0o 2 3
1 0 0] 1 0 0 n 2 1]
Ra/ —1 = Rg, Es={0 -1 of, E;j'=]0o -1 of, =10 1 -1
0 o 1] 0o o 1 o 2 3]
1 0 0 1 0 0 12 1
R3—2Ry - Rs, Ez=|0 1 of, Ej'=|o 1 of, =]l0o 1 -—1|=U
0 -2 1] 0 2 1 o 0o 5]
2 0 o] |1 2 1
we have A= E{'E; "B, 'EJ ' B U= 1 -1 0 |0 1 —1

-1 2 1[]0 0 5

each column in L can be read from the leading column in A while performing Gaussian elimination
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LU algorithm

let A € R™ " of rank r and suppose A can be lower reduced to U (without row
interchanged) then A = LU where the lower triangular, invertible L is constructed as
follows
if A=0then L=1,,and U =0
if A=#0, write A = A and let ¢; be the leading column of A
use c; to create the first leading 1 and create zero below it; denote Ay the matrix
consisting of rows 2 to m
if Ao = 0 let co be the leading column of Ay and repeat step 2-3 to create As
continue until U is found where all rows below the last leading 1 consist of zeros;
this happen after r steps
@ create L by placing ci1,co, ..., ¢, at the bottom of the first » columns of I,
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Example

2 6 -2 0 2
find LUforA=1]3 9 -3 3 1
-1 3 1 -3 1

1 3 -1 0 1 1 3 -1 0
R1/2 3 9 -3 3 1f, Rs —3R1 — Re,R3 + R1 — Rs 0 O 0 3
-1 3 1 -3 1 0 0 0 -3
1 3 -1 0 1 1 3 -1 0 1
R2/3 0 0 O 1 *2/3 , Rs+3R:—R3|0 0 O 1 *2/3 =U
0 0 O -3 2 0 0 0 O 0
we obtain
2 0 0 1 3 -1 0 1
A= 1|3 3 0 0 0 O 1 —2/3
-1 -3 1 0 0 0 O 0
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Is LU decomposition unique?

from the previous page

2 6 -2 0 2 2 0 0]t 3 -1 0 1
A=|3 9 -3 3 1|=|3 3 o|lo 0o o 1 -2/3| =L,
13 1 -3 1 ~1 -3 1/ 00 0 0 o0
we can make L the unit lower triangular (all diagonals are 1) (standard choice)
2 0 0] f1/2 0 0][2 0 O]t 3 -1 0 1
A=13 3 0 0 1/3 0f (0 3 Of[|0 O O 1 —-2/3
-1 -3 1 0 0 1] 10 0 1f (0 O O O 0
! 0 013 9 -3 0 3
=(3/2 1 0][|0 0 0 3 —2|=LUs
—1/2 -1 1/ 00 0 0 ©
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Not every matrix has an LU factor

without row pivoting, LU factor may not exist even when A is invertible

01 ol O Junr w2
A= [1 0} = LU= [lm 122] [0 U22]

from this example,
m if A could be factored as LU, it would require that lyju1; = a1 =0

m one of L or U would be singular, contradicting to the fact that A = LU is
nonsingular
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Existence and uniqueness

m existence

Theorem: suppose A is invertible; then A has LU factorization A = LU if and
only if all leading principle minors are nonzero

[(1) (1]] is non-singular but has no LU factorization

E uniqueness
Theorem: if an invertible A has an LU factorization then L and U are uniquely

determined (if we require the diagonals of L (or U) are all 1)

(Horn, Corollary 3.5.6)
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LU decomposition with row pivoting

0 0 -1
findLUof A=|-1 -1 1
2 1 =2
m the first row has a leading zero, so row operations require a row interchange, here
0 01
choose R; < Rj3 correspondingto P= |0 1 0
1 00

m note that P2 = I (permutation property), we can write
2 1 -2
A=P?A=PPA=P|-1 -1 1
0 0 -1

m perform LU decomposition on the resulting PA
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LU decomposition with row pivoting

m perform Ri1/2, Ry + 2Ry — R
2 1 1/2 -3/2
A=P|-1 1 0 -1/2 -1/2
1 0 0 -1

m perform Re X —2 — Ro

2 1 1/2 -3)2
-1 -1/2 ] [0 1 1 ]
1

m perform R3 X —1 — R3

o o 1][2 1 3 -3 0o 0 1 1 2
1 1
A=1]10 1 0 —1 -3 0 1 1 ={0 1 0 3 1 0
1 0 O 0 0 —1 0 0 1 1 0 O 0 0o 1 0
Linear algebra and applications Jitkomut Songsiri
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LU decomposition with row pivoting

same A on page 202 but swap Ry < Rs using P =

O = O
OO =
= o O

perform LU decomposition and we get different factors

0 0 -1 0101 0 020 3
A=|-1 -1 1|=1|10 0| |1/2 1 o|]0 1 1/2
2 1 -2 0010 -1 1/]0o 0 9/2
204 / 323
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Common pivoting strategy

permute rows so that the largest entry of the first column is on the top left

1 2 1 R1/2 - Ry
0o -1 1 Ry — R1 — R
0

2 3 R3 + R1 — R3

[
>
>

0 L s 1 0
ol P |0 -1 (swaprow2and3),P; = [0 O
1 . 1

0

1

0

2 0 0 12 o o]t 2 1
=P1P1110P1023_P17110023
-1 0 1 0 -1 1 1 0 1|0 -1 1

2 1

1 3/2 R3/2 — Rg
0

0

Il

)

X
[ a—|
=l

-
lvo
A
~oco
| I
—
cor

R3 + R2 — R3
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Conclusion

any square matrix A can be factorized as (with row pivoting)
A=PLU

factorization:

m P permutation matrix, L unit lower triangular, U upper triangular

m factorization cost: (2/3)n? if A has order n

m not unique; there may be several possible choices for P, L, U
interpretation: permute the rows of A and factor PTA as PTA = LU

m also known as Gaussian elimination with partial pivoting (GEPP)
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Example

m a singular A (no row pivoting)

A= =L ol

m nonsingular A (that requires row pivoting)

a0 21 _Jo 1] o)1 o
|1 0ol (1 0[|0 1|0 2
m nonsingular A (showing two choices of (P, L,U))

2 4 2 1 0o o
A=|1 1 2 1/2 10
-1 0 2 -1/2 -2 1

Linear algebra and applications Jitkomut Songsiri
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Solving a linear system with LU factor

solving linear system: (PLU)xz = b in three steps
m permutation: z; = PTb (0 flops)
m forward substitution: solve Lzo = 21 (n? flops)
m back substitution: solve Uz = 23 (n? flops)
total cost: (2/3)n® + 2n? flops, or roughly (2/3)n?
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Softwares

MATLAB

m [L,U,P] = 1u(A) find LU decomposition: A = PTLU where L is unit lower
triangular and U is upper triangular

Python

m P,L,U = scipy.linalg.lu(A) find LU decomposition: A = PLU where L is
unit lower triangular and U is upper triangular
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Exercises

find LU factorization (explain if row pivoting is required) and compare the results

with coding
4 2 0O -1 2 3 3 0
Ar=|1 -1 3|, A4,=|0 0 3|, A3=1]-2 0 2
-1 7 -7 -1 2 2 3 2 -1
suppose we aim to solve Az = b¥) for k = 1,...,1000 where A € R2000%2000 554

b )'s can be randomized as examples, write computer code to solve the linear
system using factor approach and measure the computation time in each process
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Cholesky factorization

every positive definite matrix A can be factored as
A=rLL"
where L is lower triangular with positive diagonal elements
m cost: (1/3)n3 flops if A is of order n

m L is called the Cholesky factor of A

can be interpreted as ‘square root’ of a positive define matrix

L is invertible (its diagonal elements are nonzero)

m A is invertible and
A—l — L—TL—l
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Cholesky factorization algorithm

partition matrices in A = LL" as

[ ail A2T1 ] _ |: l11 0 :| |: l11 L2T1 ] _ |: l%l llngl
Ao Ago Lo1 Lo 0 LI liLoy LogLL + LooLd,

algorithm:

determine l11 and Loy:

1
li1 = +/an, Loy = EAm

compute Los from
Agy — Loy LY = Ly LY,

this is a Cholesky factorization of order n — 1
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Proof of Cholesky algorithm

proof that the algorithm works for positive definite A of order n
m step 1: if A is positive definite then a;; > 0
m step 2: if A is positive definite, then

1
Agg — Lo LY, = Agg — G—HA21A§1

is positive definite (by Schur complement)
m hence the algorithm works for n = m if it works for n =m — 1

m it obviously works for n = 1; therefore it works for all n
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Example of Cholesky algorithm

25 15 -5 i1 O 0 l11 la1 a1
15 18 0 | =] la1 Iz © 0 lap s
-5 0 11

m first column of L

m second column of L
18 0 _ 3 [ 3 1 ] _ lag 0 lag 32
0 11 —1 - lza  l33 0 l33
9 3 _ 3 0 3 1
3 10 | T | 1 33 0 33

m third column of L: 10 — 1 = l§3, ie,lszg =3

25 15 =5 5
15 18 0 = 3
-5 0 11 —1

conclusion:
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Solving equations with positive definite A

Az =0 (A positive definite of order n)

algorithm

m factor A as A = LL7T
m solve LLTz =b

m forward substitution Lz = b
m back substitution LTz = z

cost: (1/3)n3 flops
m factorization: (1/3)n?

m forward and backward substitution: 2n?2

Linear algebra and applications Jitkomut Songsiri
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Softwares

MATLAB

m U = chol(A) returns Cholesky decomposition A = UTU where U is upper
triangular

Python

m L = scipy.linalg.cholesky(A) returns Cholesky decomposition A = LL” or
A =U"TU where L is lower (lower=True) and U is upper triangular
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Exercises

find Cholesky factorization and compare the results with coding

9 1 12 4 3 20 4 5
Al:L 3}, Ay= 14 2 —1|, A;=14 2 3
3 -1 7 5 3 5
suggest a method to randomize A and guarantee that A >~ 0
suppose we aim to solve Az = b%) for k =1,...,1000 where A € SiOJ?OXQOOO

(pdf) and b%)’s can be randomized as examples, write computer code to solve the
linear system using factor approach and measure the computation time in each
process

Linear algebra and applications Jitkomut Songsiri 217 / 323



SVD decomposition

recall that AT A = 0 and eigenvalues are non-negative

singular values

left and right singular vectors

applications: pseudo inverse
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Singular values and vectors
let A € R™ ™ we form eigenvalue problem of A7 A

T _ 2 L
A" Av; = ojv;,, i=1,2,...,n

oi = VAi(AT A) > 0 is called singular value of A

|
m v; (orthogonal and has unit-norm) is called right singular vector
m fact: ifrank of Aisr thenoy > 09> -0, >0and o; =0 fori > r
rank of A is the number of non-zero singular values of A
m there exist left singular vector uy,us, ..., u,, that are orthogonal such that
Avy = oquq, Ave = ooua, ..., Av, = opty, Avpypr == Av, =0
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Matrix form

Avy = oquy, Ave = osus, ..., Av. =opu,, Avep1=---=Av, =0

or in matrix form: AV = UX (where U and V' are orthogonal matrices)

g1 0
Alve oo v o o e ] =w o w [ o um | - 0
or | 0
0 0 0]o0
it can be shown that
m Vl,...,Vr,Urt1,. ..,V are orthogonal (eigenvectors of AT A, which is symmetric)
W Uri1,...,Uy, can be chosen such that {ui,...,u,} are orgothogonal

m hence, V,U are orthogonal matrices, V'V = I,UTU =1

unlike eigenvalue decomposition: AX = XA, SVD needs two sets of singular vectors
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SVD decomposition

let A € R™*™ be a rectangular matrix; there exists the SVD form of A

A=UxvT

mxn mxm mxXmn nxn

tall fat square
A= U » vT

m U eR"™™ V e R"™™" are orthogonal matrices
m X eR™"with¥; =0; >0and X;; =0 fori #j
m for a rectangular A, ¥ has a diagonal submatrix ¥; with dimension of min(m,n)

A= oo | [V = UV, A =U[ 510 ][] = usivf
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Square A

T
2 1 1 -1 113 o] 1 [-1 1
5B A
053 062 0587"
—0.80 —0.15 —0.58| ,rank(A)=2

2 4 -2 —0.94 —0.27 —0.20] [5.10 0 0

-2 0 -2 0.11 —0.80 0.59 0 346 0

2 1 1 —0.31 053  0.78 0 0 0]|o027 077 —058
-2 1 3 —0.41 -091 0 917 0 9] [053 —o085 o0 17
4 -2 —6|=1]08 -037 —045| | 0 0 0| |-027 —0.17 095 | ,rank(4)=1
2 -1 -3 041 —0.18 0.89 0 0 0| |-080 —051 —0.32

m check the singular values and eigenvalues of AT A
m confirm the rank and the number of nonzero singular values

m if A is invertible, so is X
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N
-
|
—
\V]
[en}
\]
[
I

0.42 0.91 0 46100 0 0 O —0.09
=064 -030 0.71 0 1.65 0 O :
0 0 0

—-0.64 030 0.71

—0.89
—0.45

0

—0.45] {3 0 o} —Ooé((a)o
0.89 [ [0 2 0] | .

0.74

0.37
—0.56

—0.45
—0.89
0

0.38
—0.55
0.19
0.72

—0.671"
033 |
0.67

0.40 —0.38
0.82 0.14
0.01  0.91
0.41 0.07

rank(A) = 2

T

,rank(A) =1

m Ay is low rank, the SVD form can be reduced to Ay = UXV7T = U, %, VI where
U,,V; have the first  columns of U and V respectively and 3., is the leading

r-diagonal block of X

Linear algebra and applications
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Tall A

0 0 0 0 0 0 —1.001 [3.080 0 0 T
0 -1 1 0.33 —0.63 —0.71 0 0 159 of |70-58 —0.58 0.58

= —0.79 021 —0.58
-2 -2 0 0.89  0.46 0 0 0 0 0| | 091 _o70 —058
0 1 -1 -0.33 0.63 —0.71 0 0 0 0 : ' ‘

m rank(A) = 2 and there are two nonzero singular values

m A can be reduced to

A=UxvT =0, VI, r=rank(A) =2
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Softwares

MATLAB

m [U,S,V] = svd(A) returns SVD decomposition: A = USV7T
Python

m U,S,Vt = scipy.linalg.svd(A)

m U,S,Vt = numpy.linalg.svd(A)

returns SVD decomposition: A = USV7T where S is returned as a vector of
singular values and Vt as V7
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Pseudo-inverse (Penrose Theorem)
one can have a notion of 'inverse’ for a non-square matrix

Penrose’s Theorem: given A € R™*", there is exactly one n x m matrix B such that

ABA = A and BAB =B
both AB and BA are symmetric

Rm><n

definition: the pseudo inverse of A € is the unique n x m matrix A" such that

AATA = A and ATAAT = At
both AAT and ATA are symmetric
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Pseudo-inverse

consider a full rank matrix A € R™*™ in three cases
m tall matrix: A is full rank < columns of A are LI & AT A is invertible

(ATA)TATYA = (ATA) 1 (ATA) =1
the pseudo-inverse of A (or left-inverse) is AT = (AT A)~tAT
m wide matrix: A is full rank < row of A are LI & AAT is invertible
A(AT(AAT)™Y) = (AATY(AATY L =1

the pseudo-inverse of A (or right-inverse) is AT = AT(AAT)™!

= A is full rank & A is invertible and both formula of
pseudo-inverses reduce to the ordinary inverse A~!

& the pseudo inverses of the three cases have the same dimension 7
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Example

0 9 1 0 -2/9
A:[—z 1 —2}’ A= AT(AAT) ™ = 12/5 1/9
1/5 —2/9
2 1 2/9 2/9 1/9
_ _ T T AN—1 AT _ |—
A= _21 01 , Al =ATA) AT = 12 12 0

however, when rentangular A has low rank, we can use SVD to find the pseudo inverse
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Pseudo-inverse via SVD
the pseudo-inverse Af can be computed from any SVD for A € R™*™
B from A = UpsnSnsxm VL, if A has rank r then

mXxXm

Y= [ Z(J)r 8 ] ., and that X, is invertible
mXn

-1
m define X1 = [ x 0

0 0 } and we can verify that
nxm

iy =3, oipyt = f, EET:H;" 8} ,ETE:[I’” 0}
mxXm nxn

proving that X' is the pseudoinverse of ¥
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Pseudo-inverse via SVD

given A = UXV7T then the pseudo-inverse of A is
At =vsiu?
by verifying Penrose’s Theorem from page 226 that
m AATA = (UXVT)(VvETUT(UZVT) = UssisvT =usvT = A
n ATAAT = (VETUT)(UzvT)(VEIUT) = veissiu? = veiuT = At

m AAT = USSTUT which is symmetric
m ATA = VEISVT which is symmetric
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Example

a tall full rank A

-2 -1 —0.6667 —0.7071 —0.2357| |3 0 1 o017
A=1|2 -1| =] 0.6667 —0.7071 0.2357 0 1.4142 [O J
-1 0 —0.3333 —0.0000 0.9428 0 0

0 0.7071 0

—-0.22 0.22 —0.1100
—-0.50 —-0.50 0

A= UstyT — v [0.3333 0 0] T

Linear algebra and applications Jitkomut Songsiri
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Example

a fat low rank A

-2 -1 -3 0 0.47 0.67
A=1|0 -3 -3 —2| = [0.81 —0.08
2 -2 0 -2 0.34 —0.74
0.1736 0 0
T tr T _ 0 0.2596 0 T
Al =vx'U" =V 0 0 0 U
0 0 0
—0.13 0.01 0.14
0 —0.09 —0.09
—0.13  —0.09 0.05
0.04 —0.07 —0.11

m rank(A) = 2 < n and there are two non-zero singular values
= ¥ € R¥* and & € R*? with 2 x 2 invertible block

Linear algebra and applications

—0.05
—0.62
—0.67
—0.40

—0.73
0.27

—0.46
0.43

0.51
—0.27
—0.25

0.78
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Applications of pseudo-inverse

m least-square problem: find a straight line that fit best in 2-norm sense to data
points

m least-norm problem: find a point x on the given hyperplane that has the
smallest norm
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| east-square problem

given X € RNXp,y e RV where typically N > p, a least-square problem is

miniﬂmize ly — X813

m it generalizes solving an overdetermined linear system that cannot be solved
exactly by allowing the system to have the smallest residual

m if X is full rank, and from zero-gradient condition, the optimal solution is
B=X"X)"XTy

m the solution is linear in y where the coefficient is the left inverse of X
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L east-norm problem

given A € R™ " b € R™ where m < n and A is full rank, the least-norm problem is

minimize ||z||2 subjectto Az =y
xT

find a point on hyperplane Ax = b while keeping the 2-norm of x smallest

m it extends from solving an under-determined system that has many solutions and
we aim to find the solution with smallest norm

m it can be shown that the optimal solution is
¥ = AT(AAT)™ 1y, provided that A is full row rank

m the solution is linear in y where the coefficient is the right inverse of A
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Outline

m definition

m linear independence

m basis and dimension

m coordinate and change of basis
m range space and null space

m rank and nullity
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Elements of vector space

a vector space or linear space (over R) consists of
maset)
m avector sum + : VxV —=V
m a scalar multiplication : RxV — VY
m a distinguished element 0 € V

which satisfy a list of properties
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properties under addition
mrxt+yelV VryeV
mrt+ty=y+zx Vr,yeV
m(z+y)t+z=x+WYy+2) Vr,y,2€V
m0+z=2z VeV
mVzeVI—x)eVst.a+(—z)=0
properties under scalar multiplication
mar <V forany a € R
m (af)r = a(fzx), Vo, € RV €V
malz+y)=ar+ay Yo e RVz,y eV
B (a+B)zr=ar+ay, Yo, ER Vx eV
mlr=x VeV

Linear algebra and applications Jitkomut Songsiri

(closed under addition
(+ is commutative

)
)
(+ is associative)
(0 is additive identity)

)

(existence of additive inverse

(closed under scalar multiplication)
(scalar multiplication is associative)
(right distributive rule)

(left distributive rule)

(1 is multiplicative identity)
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notation
= (V,R) denotes a vector space V over R

m an element in V is called a vector

Theorem: let © be a vector in V and k a scalar; then

mOu=0 (multiplication with zero gives the zero vector)
mk0=0 (multiplication with the zero vector gives the zero vector)
B (—lu=-u (multiplication with —1 gives the additive inverse)

mifku=0,thenk=0o0oru=20
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roughly speaking, a vector space must satisfy the following operations

vector addition
z,yeY = zx4+yeV

scalar multiplication
forany a€R, z€V = oaxeV
the second condition implies that a vector space contains the zero vector
0eVy

in other words, if V is a vector space then 0 € V

(but the converse is not true)
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Examples

the following sets are vector spaces (over R)
= R"
= {0}

u RmXTL

can.

u . set of m X n-complex matrices

m P, set of polynomials of degree <n
Pn={p(t) | p(t) =ao+art+ - +ant"}

m S": set of symmetric matrices of size n

C(—00,00): set of real-valued continuous functions on (—o0, o0)

C"(—00,00): set of real-valued functions with continuous nth derivatives on
(—OO, OO)
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& check whether any of the following sets is a vector space (over R)
= {0,1,2,3,...}

JERERY)
P

m {p(z) € Py | p(z) = a1z + aza® for some ay,as € R}
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Subspace

m a subspace of a vector space is a subset of a vector space which is itself a vector
space
m a subspace is closed under vector addition and scalar multiplication
examples:
m {0} is a subspace of R"
m R"*" is a subspace of C"*"
{z € R* | z; =0} is a subspace of R
{z € R? | z3 = 1} is not a subspace of R?

1 4 |0 0] . 2%2
{ [_3 2] , [0 0] } is not a subspace of R

the solution set {x € R"™ | Az = b} for b # 0 is a not subspace of R"

Linear algebra and applications Jitkomut Songsiri 245 / 323



Examples of subspace

two hyperplanes; one is a subspace but the other one is not

2z1 —3z2+x3 =0 (yellow), 227 —3x2+23=20 (grey)

1

%
A

(—3,—2,0) and y = (1,—1, —5) are on the yellow plane, and so is = +y

black = red + blue

X

x = (-3,-2,20) and y = (1, —1,15) are on the grey plane, but = + y is not
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Linear Independence

Definition: a set of vectors {v1,ve,...,v,} is linearly independent if
oy toagve+ - t+apv,=0— a1 =as=---=a, =0

equivalent conditions:

m coefficients of ajv1 + v + - - - + @y, are uniquely determined, i.e.,
101 + QU + - -+ Uy = Pror + Povg + - -+ By

implies a, = B, for k =1,2,...,n

m no vector v; can be expressed as a linear combination of the other vectors
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Examples

1 3
m (2|, |1]| areindependent
_1_ _0_
1] [3] [-1]
m (2] ,]1],] O | areindependent
1] (0] | 1]
17 [3] [-1] [4
m (2],]1],] 0 ],|2]| are not independent
1] [0 L1] [O
1] [3] [2]
m [2]|,[1],]|—1]| are not independent
1] (0] |—1]
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Linear span

Definition: the linear span of a set of vectors

{vi,v2,...,0n}
is the set of all linear combinations of vy,..., v,
span{vi,ve, ..., v} = {ajv1 + agva + - -+ + apv, | a1,...,a, € R}
example:
span { [1 O] , [O 1} , [O O] } is the set of 2 X 2 symmetric matrices
0 0|’|1 0]"|0 1
Fact: if vy,...,v, are vectors in V, span{vy,...,v,} is a subspace of V
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Basis and dimension

definition: set of vectors {vy,va,-- ,v,} is a basis for a vector space V if
m {v1,v2,...,v,} is linearly independent
m V =span {v,va,...,0,}

equivalent condition: every v € V can be uniquely expressed as
V= QU1 + -+ apy

definition: the dimension of V), denoted dim(V), is the number of vectors in a basis
for V

Theorem: the number of vectors in any basis for V is the same

(we assign dim{0} =0 )

Linear algebra and applications Jitkomut Songsiri 250 / 323



Examples

m {e

’

1,

3
|
|

1,€2,e3} is a standard basis for R3

-1 |0 9
_3],[2}} is a basis for R

t,t*} is a basis for Py
10l fo 11 To o] o o] . | »
0 0] [O 0} [1 0} ) [0 1]} is a basis for R

1
1 cannot be a basis for R®*  why ?
1

[ﬂ , [ ] [ ]} cannot be a basis for R? why ?

Linear algebra and applications Jitkomut Songsiri

(dimR? = 3)
(dim R? = 2)
(dim Py = 3)

(dim R?*2 = 4)
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Example

let V={pePy|p(2) =01} find a basis for V
m D verify that V is a subspace for Py

m characterize the space V
p(t) = ap + a1t + ast?, p(2) = ag + 2a; +4azy =0
therefore, any p(t) € V takes the form
p(t) = —2a; — 4ag + a1t + ast® = a1 (t — 2) + ax(t? —4), a1,a2 €R

m we have shown that p(t) € span{t — 2,t> — 4}
m we can verify that {t — 2,12 — 4} is LI
m therefore {t — 2,1?> — 4} is a basis for V and dim({t — 2,t> — 4}) = 2
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Standard basis for S°

any A € S? can be expressed as

ai] aiz ais 1 00 01 0 0 0 1
A= a12 Qa2 a3 = A1l 0 0 0 + a2 1 0 0 + a13 000
a1z az3 as3z 0 0 0 0 0 0 1 0 0

0 0O 0 0O

+a3 |0 0 1| +a33|(0 0 O

010 0 01

£ a11E11 + a12F12 + a13E13 + ags Bas + assEss

m we have shown that A € Span{EH,Elg, FE3, Ebs, E33}

[ | verify that {EH, FE19, 13, Eos, E33} is LI

m hence, {E11, E12, E13, Fo3, E33} is a basis for S* and dim(S?®) = 5
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Review questions

& answer the questions and explain a reason
find the standard basis for S"

can {E11, Fra, Ers, Eg1, FEag, Eas, E31, 32, Ess} be a basis for §°7
can {EH,E12,E13,E23,E33} be a basis for R3*3?
let V={2zeR"| > ,2;,=0}

m can {ej,ea,...,e,} (standard basis) be a basis for V?
m is it possible to find two different bases for V7
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Coordinates
let S = {v1,v2,...,v,} be a basis for a vector space V
suppose a vector v € V can be written as
v =aiv1 + asve + - - + apvn,
definition: the coordinate vector of v relative to the basis S is
[v]ls = (a1,a9,...,ay)

m linear independence of vectors in S ensures that a;'s are uniquely determined by
S and v

m changing the basis yields a different coordinate vector
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Geometrical interpretation
new coordinate in a new reference axis
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Examples
mS= {61,62,63}, v = (—2,4, 1)
v = —2e1 + 4ey + leg, [?}]S = (—2,4, 1)
m S=1{(-1,2,0),(3,0,0),(=2,1,1)}, v =(—2,4,1)

3 -2
1
v=|4al=202+2|0+1|1]|, [s=(3/21/21)
2 2 |, .

m S ={1,t,t?}, v(t) = —3 + 2t + 4¢>
o(t) = =3-1+2-t+4-t% [v]g =(-3,2,4)
m S ={1,t—1,t2+t}, v(t) = -3+ 2t + 42
v(t)=—-5-1-2-(t—1)+4-(t*+1), [v]s=(-5,—-2,4)
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Change of basis
let U ={u1,...,up} and W = {wy,..

a vector v € V has the coordinates relative to these bases as

['I}]W = (bl, bg, ..

[U]U = (al,ag, e ,an),

suppose the coordinate vectors of wy, relative to U is

[wrlu = (C1k, C2ks - - - 5 Cnk)
or in the matrix form as
C11
C21
[wl w9 wn} = [ul u9 'U,n]
Cnl

Linear algebra and applications Jitkomut Songsiri

., Wnp } be bases for a vector space V

-, bn)

C12 Cln
C22 Con
Cn2 Cnn
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the coordinate vectors of v relative to U and W are related by

ai ci1 ci2 - cip| b b1

az Co1 22 ccr Cop| | b2 A | b2
g = P

75 Cnl Cp2 - Cpn bn bn

m we obtain [v]y by multiplying [v]y with P
m P is called the transition matrix from W to U
m the columns of P are the coordinate vectors of the basis vectors in W relative to U

Theorem &

P is invertible and P~ is the transition matrix from U to W
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Example
find [v]y, given

{000 v {R ) e[

first, find the coordinate vectors of the basis vectors in W relative to U

2 1 |1 —1] [e11 12
1 0] [1 1] [ca c22
from which we obtain the transition matrix
st -T2 18 1
I A ] R S
and [v]y is given by
0] P31 [=2|_11-5
=50 Sl |1 T2

Linear algebra and applications
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Nullspace

the nullspace of an m x n matrix is defined as

N(A) ={z eR"| Az =0}

m the set of all vectors that are mapped to zero by f(z) = Ax
m the set of all vectors that are orthogonal to the rows of A

if Az ="bthen A(z+ 2) =bforall z € N(A)

also known as kernel of A

N (A) is a subspace of R"
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Example
{m | Ax I b} {z | Az:: 0}

2 -1 -3
A=|-4 2|, b=16
-6 3 9

m N(A) ={z| 221 — 22 =0}
m the solution set of Az =bis {x | 221 — 29 = —3}
m the solution set of Az = b is the translation of N/(A)
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Zero nullspace matrix

m A has a zero nullspace if N'(A) = {0}
m if A has a zero nullspace and Az = b is solvable, the solution is unique

m columns of A are independent

¥ equivalent conditions: A € R™*"
m A has a zero nullspace
m A is invertible or nonsingular

m columns of A are a basis for R”
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Range space

the range of an m X n matrix A is defined as

R(A)={y € R" | y = Az for some z € R" }

the set of all m-vectors that can be expressed as Ax

m the set of all linear combinations of the columns of A = [al e an]
R(A)={y |y =ma1 + 2200+ -+ +2pa,, z€R"}

the set of all vectors b for which Az = b is solvable

also known as the column space of A
R(A) is a subspace of R™
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Full range matrices

A has a full range if R(A) = R™

¥ equivalent conditions:
m A has a full range
m columns of A span R™

m Ax = b is solvable for every b

s NV(AT) = {0}
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Bases for R(A) and N (A)

A and B are row equivalent matrices, i.e.,
B=FE,---FEyF A

Facts &

m elementary row operations do not alter N'(A)

m columns of B are independent if and only if columns of A are

m a given set of column vectors of A forms a basis for R(A) if and only if the
corresponding column vectors of B form a basis for R(B)
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Examples
given a matrix A and its row echelon form B:
-1 2 1 1 0 01
A=1]0 1 1], B=1]0 1 2 1
2 3 ) 0 00O
basis for N'(A): from {z | Az =0} = {z | Bx = 0}, we read

r1+24=0, x9+2234+714=0

define x3 and x4 as free variables, any z € N/(A) can be written as

1 —x4 0 -1
2| | —2m3— 74| —2 -1
T = 2yl = - =3 1 + 4 0
T4 T4 0 1

(a linear combination of (0,—2,1,0) and (—1,—-1,0,1)

Linear algebra and applications Jitkomut Songsiri
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hence, a basis for N'(A) is

basis for R(A): pick a set of the independent column vectors in B (here pick the 1st
and the 2nd columns)

the corresponding columns in A form a basis for R(A):

-1 2
01,1
2 3

dimR(A) =2
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& conclusion: if R is the row reduced echelon form of A
m the pivot column vectors of R form a basis for the range space of R

m the column vectors of A corresponding to the pivot columns of R form a basis for
the range space of A

m dimR(A) is the number of leading 1's in R
m dim A (A) is the number of free variables in solving Rx =0
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Rank and Nullity

Rm><n

rank of a matrix A € is defined as

rank(A) = dimR(A)
Rmxn

nullity of a matrix A € is

nullity(A) = dim N (A)
Facts &
m rank(A) is maximum number of independent columns (or rows) of A
rank(A4) < min(m,n)

m rank(A) = rank(A7)
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Full rank matrices

for A € R™ "™ we always have rank(A) < min(m,n)

we say A is full rank if rank(A) = min(m,n)

m for square matrices, full rank means nonsingular (invertible)
m for skinny matrices (m > n), full rank means columns are independent

m for fat matrices (m < n), full rank means rows are independent
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Rank-Nullity Theorem

for any A € R™*",
rank(A) + dimN(A) =n

Proof:

m a homogeneous linear system Ax = 0 has n variables
m these variables fall into two categories

m leading variables
m free variables

m # of leading variables = # of leading 1's in reduced echelon form of A
= rank(A)
m # of free variables = nullity of A
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Softwares

MATLAB

m rank(A) provides an estimate of the rank of A

m null(A) gives normalized vectors in an orthonormal basis for N'(A)
Python

® numpy.linalg.matrix_rank(A) provides an estimate of the rank of A

m scipy.linalg.null_space(A) finds orthonormal basis for the nullspace of A
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Linear transformation
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Outline

m linear transformation
m matrix transformation
m kernel and range

m isomorphism

®m composition

m inverse transformation
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Transformation
let X and Y be vector spaces
a transformation 7" from X to Y, denoted by
T:X—-Y
is an assignment taking x € X toy =T(z) €Y,

T:X—-Y, y=T()

m domain of 7', denoted D(T) is the collection of all x € X for which T is defined
m vector T'(z) is called the image of x under T

m collection of all y = T'(xz) € Y is called the range of T', denoted by R(T")
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Example
example 1 define 7 : R®* — R? as

Y1 = —x1+2x9 + 4w
Y2 = —x2+9x3

example 2 define T: R> — R as
y = sin(z1) + z923 — 73

example 3 general transformation 7' : R® — R™

i = fi(z,z2,..., 1)

Y2 - fQ(xthw-'axn)

ym = fm(xhx%‘-wxn)
where f1, fo,..., fin are real-valued functions of n variables

Linear algebra and applications Jitkomut Songsiri
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Linear transformation

let X and Y be vector spaces

Definition: a transformation 7" : X — Y is linear if

mT(z+2)=T(x)+T(2),

over R

Ve,y e X

m T'(ax) =aT(x), Vre X,YVaeR

[ 2Tty
>
T(y) / T ax
\ tg;
L
T(x+y) ()

Linear algebra and applications
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Examples

® which of the following is a linear transformation ?
® matrix transformation 7' : R" — R™
T(x) = Az, AeR™"
m affine transformation 7' : R” — R™
T(x)=Ax+b, AeR™" beR™

mT:P,— Py
T(p(t)) = tp(t)
nT:P, =P,
T(p(t)) =p(t+1)
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R™M L RN (X)) = XT
R 5 R, T(X
RV SR, T(X
:R" >R, T(x)=|z| & /23 +23+---+22
m7T:R"=>R", T(x)=0

]
e = T

denote F'(—o0,00) the set of all real-valued functions on (—o0, 00)
m T :CY(—00,00) = F(—00,00)

T :C(—00,00) = C(—00,00)

T(f) = /0 £(s)ds
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Examples of matrix transformation

T:R" —R™
T(z) = Az, AeR™"

zero transformation: 7 : R® — R™
T(x)=0-2=0
T maps every vector into the zero vector

identity operator: T : R" — R"

T maps a vector into itself
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Reflection operator
T:R" = R"

T maps each point into its symmetric image about an axis or a line

X2
(w2,1) ¢
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Projection operator
T:R" = R"

T maps each point into its orthogonal projection on a line or a plane

2 A T2
(IlJCz) B e /
/2 R (@1, 22,3)
| S
R TN
($17I2,0)
10 1 00
T(x) = [0 0} T T@) =0 1 0|«
0 0 0
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Rotation operator
T:R" - R"

T maps points along circular arcs

A T2
\(w17w2)
T) \ T rotates = through an angle 6
(z1,22)
4 T \ .
T - _ |cosf —sind
w="T(z) = [sin& cos @ ]
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Selector transformations

these transformations can be represented as y = T'(z) =
partial selection shuffle reverser
-1 > W II7 [ | | E2U
P | B g Zg
@ r_x WMr v WA IiES
Tg —> T —> T4 —> Ty
x5 [ Irs || z6 [ T6
Tg Z10 T3 . Ts
T7 T T4
xg I I 10 . Z3
T9 x5 Z2
210l | oz B H=

m partial selection: select some entries of z

m shuffle: randomize entries in x
m reverser: reverse the order of

Ax

down-sampling

ITI
—>

m down-sampling: sub-sample entries in z, e.g., x(1:2:end)
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Shift transformations

shifting sequences as a matrix transformation 7'(z) = Ax

forward shift backward shift
O L |
/
= m

m |
;/l ;\. Ty ()
| .8
[ |
& T(x) z  T(x)

L2
3
T4

Tn

L1 ]

what is the associated matrix A for each transformation ?

do you notice some structure of A ?
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Signal processing

differencing and cumulative sum as matrix transformations 7'(xz) = Ax

-xg—l'l
Ty (z) = r3 — T2
Difference :
sE ¥ F 3 i — 1 Ty — Ty
meflte o I111, o _
e I il b x1
o 2 . s & 10 12 14 16 18 2 T1 + x2
Cumulative sum _ Ty(x) = 1+ 22 + X3
SRR S A & ;
o lllllll ll o] |21+ 22+ + x|

0 4 6 8 10 12 14 16 18 20

diff and cumsum commands in MATLAB
what is the associated matrix A for each transformation ?
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Image transformation

cropping a 1200 x 850-pixel image to 490 x 430-pixel image

e

transformation of a matrix of M x N to the size of m X n
T:RM*N , Rmn T(X)= AXB

where A selects the rows of X and B selects the columns of X

Linear algebra and applications Jitkomut Songsiri
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Image of linear transformation
let ¥V and W be vector spaces and a basis for V is
S = {v1,v9,...,0,}
let T': YV — W be a linear transformation
the image of any vector v € V under T can be expressed by
T(v) =a1T(v1) + a2T(v2) + - - - + ap T (vy)
where a1, a9, ...,a, are coefficients used to express v, i.e.,

v =a1v; + agv2 + -+ + apty

(follow from the linear property of T')
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Definition

let T: X — Y be a linear transformation from X to Y
Definitions:

kernel of T is the set of vectors in X that T" maps into 0

ker(T)={z € X |T(z) =0}

range of T is the set of all vectors in Y that are images under T’
R(I)={yeY|y=T(x), ze€X}

Theorem &
m ker(T') is a subspace of X

m R(T) is a subspace of Y’

Linear algebra and applications Jitkomut Songsiri
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Example

matrix transformation: 7: R® - R™, T(z) = Az
m ker(T) = N(A): kernel of T' is the nullspace of A
m R(T) = R(A): range of T is the range (column) space of A

zero transformation: T: R - R™, T(x)=0

ker(T) =R", R(T)={0}
identity operator: T:V —»V, T(z)==z

ker(T) = {0}, R(T)=V
differentiation: T : C'(—o00,00) = F(—o0,00), T(f) = f
ker(T') is the set of constant functions on (—o0, c0)
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Rank and Nullity

rank of a linear transformation T : X — Y is defined as

rank(7) = dimR(T)

nullity of a linear transformation 7' : X — Y is defined as
nullity (7") = dim ker(7")

(provided that R(7") and ker(7") are finite-dimensional)

redrank-Nullity theorem: suppose X is a finite-dimensional vector space

rank(7") 4+ nullity(7") = dim(X)
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Proof of rank-nullity theorem

assume dim(X) =n

assume a nontrivial case: dimker(7T) =r where 1 <r <n

let {v1,v2,...,v,} be a basis for ker(T")

let W = {v1,ve,...,0:} U{vps1,0p42,...,0,} be a basis for X
we can show that

S={T(wrs1),--.,T(vn)}
forms a basis for R(T") (.. complete the proof since dim S =n —r)
span S = R(T)
m for any z € R(T'), there exists v € X such that z = T'(v)
m since W is a basis for X, we can represent v = aqv1 + -+ - + apU,

m we have z = a, 11T (vp41) + - - + o, T(vy) (. vi,...,v € ker(T))
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S is linearly independent, i.e., we must show that

1T (Vpy1) + -+ T(vy,) =0 = app1=-=a,=0

m since T is linear
1T (pg1) + -+ @ T(vy) = T(Qp 41041 + -+ + @pvy) =0
m this implies ay 410,41 + -+ - + v, € ker(T)
Q1 Upt1 + -+ + apUp = a1v1 + agva + - - - 0y
m since {v1,...,Vp, Vp41,...,0,} is linear independent, we must have

alzzaT:aT+1::an:0
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One-to-one transformation

a linear transformation T : X — Y is said to be one-to-one if

Va,z € X Tx)=T() = =z==z

m 7" never maps distinct vectors in X to the same vector in Y
m also known as injective transformation

8 Theorem: T is one-to-one if and only if ker(T") = {0}, i.e,

T(z)=0 = z=0

m for T'(x) = Az where A € R™",
T is one-to-one <«= A s invertible

Linear algebra and applications Jitkomut Songsiri 296 / 323



Onto transformation
a linear transformation T : X — Y is said to be onto if

for every vector y € Y, there exists a vector z € X such that

y="T()

m every vector in Y is the image of at least one vector in X
m also known as surjective transformation
8 Theorem: T is onto if and only if R(T) =Y

& Theorem: for a linear operator T : X — X,

T is one-to-one if and only if T is onto
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Examples

2 which of the following is a one-to-one transformation ?
m7T:P, > R"!

T(p(t)) =T(ap + ait + - -+ + ant™) = (ap, a1, . ..

mnT:P,—> P,

T(p(t)) = tp(t)
m 7 :R™™ 5 R T(X)=XT
m7T:R™ R, T(X)=tr(X)
m7T:CY—00,00) = F(—00,00), T(f)=f

Linear algebra and applications Jitkomut Songsiri
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Matrix transformation

consider a linear transformation 7' : R® — R™,
T(x) = Az, Ae R

& Theorem: the following statements are equivalent
m 7' is one-to-one
m the homogeneous equation Az = 0 has only the trivial solution (z = 0)
m rank(4) =n
¥ Theorem: the following statements are equivalent
m T is onto
m for every b € R™, the linear system Ax = b always has a solution
m rank(4) =m
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Isomorphism

a linear transformation 7' : X — Y is said to be an isomorphism if
T is both one-to-one and onto

if there exists an isomorphism between X and Y, the two vector spaces are said to be
isomorphic

¥ Theorem:

m for any n-dimensional vector space X, there always exists a linear transformation
T : X — R" that is one-to-one and onto (for example, a coordinate map)

m every real n-dimensional vector space is isomorphic to R™
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Examples
m7T:P, >R
T(p(t)) = T(ao + art + - -+ + ant") = (ag, a1, . .., an)

P,, is isomorphic to R™ !

ai a
T ([ ! 2]) = (a1,a2,a3,a4)
a3 a4

is isomorphic to R*

m 7T :R>? 4 R?

R2><2
in these examples, we observe that
m T maps a vector into its coordinate vector relative to a standard basis
m for any two finite-dimensional vector spaces that are isomorphic, they have the

same dimension
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Composition of linear transformation
let 79 : U4 — V and T : V — W be linear transformations
the composition of T5 with T3 is the function defined by

(Tz 0 T1)(u) = To(T1 (u))

a

@ Ty (u) To(T1(u))
u % w

where 4 is a vector in U

Theorem & if 17,75 are linear, so is 1o 0 T}

Linear algebra and applications Jitkomut Songsiri
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Examples
example 1: 77 : P1 - Py, Th: Py — Py

Ti(p(t)) =tp(t), Ta(p(t)) = p(2t +4)
then the composition of Ty with T} is given by
(Tz o T1)(p(t)) = T2(T1(p(t))) = Ta(tp(t)) = (2t + 4)p(2t + 4)
example 2: T':V — V is a linear operator, I : V — V is identity operator
(ToI)(v) =T(I(v)) =T(v), (IoT)(v)=I(T(v))=T(v)

hence, Tol =T and [oT =T
example 3: 77 : R* = R™, T, : R™ — R" with

Ti(z) = Az, Ty(w)= Bw, AeR™" BeR"™™

then T3y 0Ty = AB and Thb 0T} = BA
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Order of operations matters

let T,T5 : R? — R? be the following matrix transformations

m 7T (z) is the projection of = on the x;-axis
m T5(x) is the rotation of = by 0 (clockwise direction)

n T

project and rotate rotate and project

the composite of 75 with 77 VS the composite of T} with 15

which is which ?
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Nonlinear composite transformations

composite transformations can be defined for nonlinear mappings

many examples in applications:
m7i:R" = RandT5:R— R norm-squared

Ti(z) = 2], To(x) =2 = (TroTi)(x)=|z|;=2c"2
m7;:R" - R"and T5: R™ — R norm of affine
Ti(z) = Az +0b, DTy() =z} = (ThoT)(z)=|Ax+0[3
m7i:R" e R™and T5 : R — R™ transform in neural network

Ti(x) =Wz +0b, Ta(z)=max(0,z) = (T2oT1)(x)=max(0, Wz +b)

Linear algebra and applications Jitkomut Songsiri 305 / 323



Two operators cancel each other

scaling operators: 77,75 : R* - R"

Ty (z1,22,...,2y) = (a171,02%2,...,0,Ty)
To(z1, 22, ..., xn) = (x1/a1,22/a2,...,xn/an), Yap #0
(T2 o Tl)(l’) = (Tl @] Tz)(l‘) =T

shift operators: 77,75 : R" — R"

Ty (z1,22,...,Ty) (2,23, 4y, Tpn,T1)
To(z1, 22, ..., xn) = (Tp,T1,T2,...,Tn—2,Tn_1)
(TyoTy)(x) = To(xo,x3,...,Tpn,21) =2
(Tl o TQ)(.’E) = Tl(a:n,xl, N ,:L‘n_g,xn_l) =X

in these examples, T5 brings the image under T} back to the original x !

Linear algebra and applications Jitkomut Songsiri 306 / 323



Inverse of linear transformation

a linear transformation 7' : ¥V — W is invertible if there is a transformation
S : W — V satisfying
SoT =1, and ToS=1Iy

we call S the inverse of T and denote S = 71

u T HT(uw)=u Yuecl
T(T Y w)) =w Ywe R(T)

Facts:
m the inverse transformation 71 : R(T) — V exists if and only if T' is one-to-one
m T-1:R(T) — Vis also linear &
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Inverse of matrix transformation
consider T': R — R" where T'(z) = Ax

m T is one-to-one if and only if A is invertible
m T~ exists if and only if A is invertible

the inverse transformation must satisfy
T YT (x)) =T "(Ar) =2, VacR"
to find the description of 7!
let y = Az and since A™! exists, we can write z = A~y
T Az) =T (y) = A"y

this holds for all y € R™ (since y € R(A) = R")

conclusion: the inverse transformation is simply the matrix transformation given by
A—l
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Inverse of difference operator

I 1
X9 — I -1 1
T:R"—R", T(x)=| -2 | = -1 1 T2 Ax

| Tn — Tp—1] -1 1
does T" have an inverse 7 if yes, what would it be 7

m please check ® that A is invertible and therefore 77! exists
m T () is given

1 1

1 1 T+ T2
Tla)=Ale=|, | z= .

1 ]. ]. 1 xl+x2+...+xn

T~ is the cumulative sum operator ! (difference cancels with sum)
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Inverse of transformation on P,

T:P; — Py, T(p(x)) = p(x + ¢) where ¢ € R is given
m it can be verified & that T is linear and one-to-one
m let p(x) = ag + a1z be any polynomial in Py, 7! must satisfy

T~ Y T(p(x)) =T "(ao + ar(z + ¢)) = p(x) = ap + a1z, Vag,a1 € R

m to find description of 771, let q(z) = by + biz £ ap + a1 (x + ¢) and we should
write ag, a1 in terms of by, by

bo +bix =ag+aict+ax = ag=by—bic, a1 =b;

m we can write 771 (bg + b1z) = by — bic + byw = by + by (z — )

it shows that 77 1(¢q(x)) = q(z — ¢) (forward translation = + ¢ cancels with backward
translation x — ¢)

Linear algebra and applications Jitkomut Songsiri 310 / 323



Domain of 7! may not be the whole co-domain of T

T : R? - R?*% and given a,c # 0
T T _laxy 0O
2l ) | 0 cxy

m T is linear and one-to-one (hence, T~! exists)

.R(T):span{[(l) 8][8 (1)]}

T R(T) — R? is defined from R(T') and must satisfy

- (7 &)L

it follows that T=Y(Y) = (y11/a, y22/c) where Y € R(T)

we can verify that &

Linear algebra and applications Jitkomut Songsiri
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Composition of one-to-one linear transformation

if Ty :U —V and T : V — W are one-to-one linear transformation, then
m 75 o1y is one-to-one
m (ThoT) =T oyt

example: T3 : R* - R", 1T5:R" - R"

Ty (z1,22,...,2y) = (a171,a2%2,...,anTy), ax#0,k=1,....n

To(x1,22,...,2n) = (22,23,...,%n,21)

both 77 and T are invertible and the inverses are

Tfl(wl,w%---,wn) = ((l/al)wla(1/a2)w27"->(1/an)wn)
T2_1(w1,w2,...,wn) = (wp,w1,...,Wy—1)
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from a direct calculation, the composition of Tl_1 with T2_1 is

(T o Ty H(w) = Ty Hwp,wiy- . wyi)
= ((1/a1)wp, (1/az)wy,. .., (1/apwp—1))

now consider the composition of T» with T}
(Th o Th)(x) = (agz2, ..., anTy,a121)

it is clear to see that
(TooTy)o (T 0Ty )y =1
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Matrix representation for linear transformation

let T: YV — W be a linear transformation

“’/Nf
V is a basis for V

: ) dimV =n
coordinate i coordinate
matrix
ap representation map W is a basis for W
e TE O Ay =m
R" R™

how to represent an image of T" in terms of its coordinate vector ?

Rm><'rL

problem: find a matrix A € that maps [v]y into [T (v)]w
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Key idea

the matrix A must satisfy
Avly = [T (v)]lw, forall veV

hence, it suffices to hold for all vector in a basis for V
suppose a basis for V is V = {v1,v9,...,0,}

Aln] = [T(v)],  Alva] = [T(v2)], ...,  Alva] = [T(va)]

(we have dropped the subscripts that refer to the choice of bases V, W
A is a matrix of size m X n, so we can write A as

A:[al as ... an]

where ay's are the columns of A
the coordinate vectors of v's are simply the standard unit vectors

[vi] =e1, [va] =e€2, ..., [op]=¢en
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hence, we have
Alvi] = a1 = [T(v1)], Alvel = a2 =[T(v2)], -+, Alvn] = an = [T(vy)]
stack these vectors back in A

A=[[T()] [T(v2)] - [T(vn)] ]

m the columns of A are the coordinate maps of the images of the basis vectors in V

m we call A the matrix representation for T relative to the bases V' and W and
denote it by

[Tlwy
m a matrix representation depends on the choice of bases for V and W

special case: T : R" — R™, T(x) = Bz we have [T] = B relative to the standard
bases for R™ and R"
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Example 1
T:V — W where

YV = P; withabasis V ={1,t}
W = P; with abasis W= {t—1t}

define T'(p(t)) = p(t + 1), find [T relative to V and W
solution.
find the mappings of vectors in V' and their coordinates relative to W

Tw)=T1) = 1 = —1-(t—1)+1-¢
T(v) =Tt = t+1 = —1-(t—1)+2-¢

hence [T'(v1)lw = (—1,1) and [T'(v2)lw = (—1,2)
Ty = [Tl Tealw) = | )]
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Example 2

given a matrix representation for T : Py — R?

m-ls 5 4]

relative to the bases V = {2 —¢,¢t +1,¢t* — 1} and W = {(1,0), (1,1)}

find the image of 6t2 under T

solution. find the coordinate of 6¢2 relative to V by writing
6t°=a1-(2—t)+as-(t+1)+az-(t*—1)

solving for a, ao, aig gives

[6t%]y =

DN N
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from the definition of [T7:
[T(62)]w = [Thwv[622]y = [

then we read from [T'(6¢2)]y that

T(6t*) =8-(1,0) +30- (1,1) = (38, 30)
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Matrix representation for linear operators

we say T is a linear operator if T is a linear transformation from V to V

m typically we use the same basis for V, says V = {v1,va,..., 05}
m a matrix representation for 7" relative to V is denoted by [T]y where

[Ty =[ [T()] [T(w)] ... [T(wn)] ]

Theorem &
m T is one-to-one if and only if [Ty is invertible
= [T71y = ([Tlv)~™!
what is the matrix (relative to a basis) for the identity operator ?
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Matrix representation for composite transformation

if Ty :U —V and T5 : V — WV are linear transformations
and U, V., W are bases for U,V, W respectively

then
(T2 0 Thlww = [Tolwy - [Tilvu

example: 77 : U -V, 15 :V - W
U=P;, V=Py, W=P3
U={1t}, V={1t}, W={1tt}
T1(p(t)) = T (a0 + a1t) = 2ap — 3a;t
Ta(p(t)) = 3tp(t)
find [T o 7]
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solution. first find [T3] and [T3)]

3t
3t2
) = 3t

next find [1% o T1]

(Ty 0 T1)(1)
(T2 o Tl)(t)

—3t

= 2:-140-t+0-#2 — = (2) _03
= 0-1—3-t+0-¢? e

0 0
0-1+3-140-t>40-83 g 8 8
0-140-14+3-24+0-83 = [Ty = 0 3 0
. . .42 .43
0-1+0-14+0-12+3-¢ 00 3

0 0
T»(2) = 6t 16 0
Ty(-3t) = 92 TeeTil =1y g

0 0

easy to verify that [Th o T1] = [T%] - [T1]
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