1. System of Linear Equations

- linear equations
- elementary row operations
- Gaussian elimination

Linear equations

a general linear system of m equations with n variables is described by

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & =\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

where $a_{i j}, b_{j}$ are constants and $x_{1}, x_{2}, \ldots, x_{n}$ are unknowns

- equations are linear in $x_{1}, x_{2}, \ldots, x_{n}$
- existence and uniqueness of a solution depend on $a_{i j}$ and b_{j}

Example: solving ordinary differential equations

given $y(0)=1, \dot{y}(0)=-1, \ddot{y}(0)=0$, solve

$$
\dddot{y}+6 \ddot{y}+11 \dot{y}+6 y=0
$$

the closed-form solution is

$$
y(t)=C_{1} e^{-t}+C_{2} e^{-2 t}+C_{3} e^{-3 t}
$$

C_{1}, C_{2} and C_{3} can be found by solving a set of linear equations

$$
\begin{aligned}
& 1=y(0)=C_{1}+C_{2}+C_{3} \\
& -1=\dot{y}(0)=-C_{1}-2 C_{2}-3 C_{3} \\
& 0=\ddot{y}(0)=C_{1}+4 C_{2}+9 C_{3}
\end{aligned}
$$

Example: linear static circuit

given $V, R_{1}, R_{2}, \ldots, R_{5}$, find the currents in each loop
by KVL, we obtain a set of linear equations

$$
\begin{aligned}
V & =\left(R_{1}+R_{4}\right) i_{1}-R_{4} i_{2} \\
0 & =-R_{4} i_{1}+\left(R_{2}+R_{4}+R_{5}\right) i_{2}-R_{5} i_{3} \\
0 & =-R_{5} i_{2}+\left(R_{3}+R_{5}\right) i_{3}
\end{aligned}
$$

Example: polynomial interpolation

fit a polynomial

$$
p(t)=x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1}
$$

through n points $\left(t_{1}, y_{1}\right), \ldots,\left(t_{n}, y_{n}\right)$

problem data (parameters): $t_{1}, \ldots, t_{n}, y_{1}, \ldots, y_{n}$
problem variables: find x_{1}, \ldots, x_{n} such that $p\left(t_{i}\right)=y_{i}$ for all i
write out the conditions on x :

$$
\begin{array}{cccc}
p\left(t_{1}\right) & =x_{1}+x_{2} t_{1}+x_{3} t_{1}^{2}+\cdots+x_{n} t_{1}^{n-1} & =y_{1} \\
p\left(t_{2}\right) & =x_{1}+x_{2} t_{2}+x_{3} t_{2}^{2}+\cdots+x_{n} t_{2}^{n-1} & = & y_{2} \\
\vdots & \vdots & & \vdots \\
p\left(t_{n}\right) & =x_{1}+x_{2} t_{n}+x_{3} t_{n}^{2}+\cdots+x_{n} t_{n}^{n-1}= & y_{n}
\end{array}
$$

Special case: two variables

Examples:

$$
\begin{aligned}
2 x_{1}-x_{2} & =-1 \\
4 x_{1}-2 x_{2} & =2
\end{aligned}
$$

(a) no solution
$2 x_{1}-x_{2}=-1$
$x_{1}+x_{2}=-1$

(b) one solution
$2 x_{1}-x_{2}=-1$
$4 x_{1}-2 x_{2}=-2$

(c) infinitely many solutions

- no solution if two lines are parallel but different interceptions on x_{2}-axis
- many solutions if the two lines are identical

Geometrical interpretation

the set of solutions to a linear equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

can be interpreted as a hyperplane on \mathbf{R}^{n}

$$
2 x_{1}-x_{2}+x_{3}=1
$$

a solution to m linear equations is an intersection of m hyperplanes

Existence and uniqueness of solutions

given a system of linear equations existence:

- no solution (the linear system is inconsistent)
- a solution exists (the lienar system is consistent) uniqueness:
- the solution is unique
- there are infinitely many solutions
every system of linear equations has zero, one, or infinitely many solutions
there are no other possibilities
no solution

$$
\begin{array}{ccccc}
x_{1}+x_{2} & =1 & x_{1}+x_{2} & =1 \\
2 x_{1}+2 x_{2} & = & 0 & x_{1}+x_{2} & = \\
x_{1}-x_{2} & = & -1
\end{array}
$$

unique solution

$$
\begin{array}{ccc}
x_{1}+x_{2} & =1 \\
2 x_{1}-x_{2} & = & 0
\end{array} \Rightarrow x=(1 / 3,2 / 3) \quad \begin{array}{rll}
x_{1}+x_{2} & = & 0 \\
2 x_{1}+x_{2} & = & -1 \\
x_{1}-x_{2} & = & -2
\end{array} \Rightarrow x=(-1,1)
$$

infinitely many solutions

$$
\begin{array}{rlrlr}
x_{1}+x_{2}=1 & x_{1}-x_{2}+2 x_{3} & =1 \\
2 x_{1}+2 x_{2}= & 2 & -x_{1}+x_{3} & =-1 \\
& & 3 x_{1}-2 x_{2}+3 x_{3} & =3 \\
x=(1-t, t), & x=(1-t, 3 t, t), & & t \in \mathbf{R}
\end{array}
$$

Elementary row operations

define the augmented matrix of the linear equations on page 1-2 as

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

the following operations on the row of the augmented matrix:

1. multiply a row through by a nonzero constant
2. interchange two rows
3. add a constant times one row to another
do not alter the solution set and yield a simpler system these are called elementary row operations on a matrix
example:

$$
\left.\begin{array}{cccc}
x_{1}+3 x_{2}+2 x_{3} & = & 2 \\
-x_{1}+x_{2}+x_{3} & = & -1 \\
2 x_{1}-x_{2}-2 x_{3} & = & \text { augmented matrix } & \Longrightarrow
\end{array} \begin{array}{cccc}
1 & 3 & 2 & 2 \\
-1 & 1 & 1 & -1 \\
2 & -1 & -2 & 3
\end{array}\right]
$$

add the first row to the second $\left(R_{1}+R_{2} \rightarrow R_{2}\right)$

$$
\begin{array}{cl}
x_{1}+3 x_{2}+2 x_{3} & =2 \\
4 x_{2}+3 x_{3} & =1 \\
2 x_{1}-x_{2}-2 x_{3} & =3
\end{array} \quad \Longrightarrow \quad\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
0 & 4 & 3 & 1 \\
2 & -1 & -2 & 3
\end{array}\right]
$$

add -2 times the first row to the third $\left(-2 R_{1}+R_{3} \rightarrow R_{3}\right)$

$$
\begin{array}{cll}
x_{1}+3 x_{2}+2 x_{3} & = & 2 \\
4 x_{2}+3 x_{3} & = & 1 \\
-7 x_{2}-6 x_{3} & = & -1
\end{array} \quad \Longrightarrow \quad\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
0 & 4 & 3 & 1 \\
0 & -7 & -6 & -1
\end{array}\right]
$$

multiply the second row by $1 / 4\left(R_{2} / 4 \rightarrow R_{2}\right)$

$$
\begin{array}{cl}
x_{1}+3 x_{2}+2 x_{3} & = \\
x_{2}+\frac{3}{4} x_{3} & = \\
\frac{1}{4} \\
-7 x_{2}-6 x_{3} & = \\
-1
\end{array} \quad \Longrightarrow\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
0 & 1 & 3 / 4 & 1 / 4 \\
0 & -7 & -6 & -1
\end{array}\right]
$$

add 7 times the second row to the third $\left(7 R_{2}+R_{3} \rightarrow R_{3}\right)$

$$
\begin{array}{cl}
x_{1}+3 x_{2}+2 x_{3} & =2 \\
x_{2}+\frac{3}{4} x_{3} & =\frac{1}{4} \\
-\frac{3}{4} x_{3} & =\frac{3}{4}
\end{array} \quad \Longrightarrow\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
0 & 1 & 3 / 4 & 1 / 4 \\
0 & 0 & -3 / 4 & 3 / 4
\end{array}\right]
$$

multiply the third row by $-4 / 3\left(-4 R_{3} / 3 \rightarrow R_{3}\right)$

$$
\begin{array}{cl}
x_{1}+3 x_{2}+2 x_{3} & = \\
x_{2}+\frac{3}{4} x_{3} & = \\
\frac{1}{4} \\
x_{3} & = \\
\hline
\end{array} \quad \Longrightarrow\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
0 & 1 & 3 / 4 & 1 / 4 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

add $-3 / 4$ times the third row to the second $\left(R_{2}-(3 / 4) R_{3} \rightarrow R_{2}\right)$

$$
\begin{array}{cl}
x_{1}+3 x_{2}+2 x_{3} & = \\
x_{2} & = \\
x_{3} & = \\
\hline
\end{array} \quad \Longrightarrow\left[\begin{array}{cccc}
1 & 3 & 2 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

add -3 times the second row to the first $\left(R_{1}-3 R_{2} \rightarrow R_{1}\right)$

$$
\begin{array}{clc}
x_{1}+2 x_{3} & = & -1 \\
x_{2} & = & 1 \\
x_{3} & = & -1
\end{array} \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

add -2 times the third row to the first $\left(R_{1}-2 R_{2} \rightarrow R_{1}\right)$

$$
\begin{aligned}
& x_{1}= \\
& 1 \\
& x_{2}= \\
& x_{3}= \\
& \hline
\end{aligned} \quad-1 \quad \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Gaussian elimination

- a systematic procedure for solving systems of linear equations
- based on performing row operations of the augmented matrix
- simplifies the system of equations into an easy form where a solution can be obtained by inspection

Row echelon form

definition: a matrix is in row echelon form if

1. a row does not consist entirely of zeros, then the first nonzero number in the row is a 1 (called a leading $\mathbf{1}$)
2. all nonzero rows are above any rows of all zeros
3. in any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the right than the leading 1 in the higher row
examples:

$$
\left[\begin{array}{cccc}
1 & 4 & -3 & 5 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 2
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{ccccc}
0 & 1 & 2 & 5 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Reduced row echelon form

definition: a matrix is in reduced row echelon form if

- it is in a row echelon form and
- every leading 1 is the only nonzero entry in its colum examples:

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & -1
\end{array}\right], \quad\left[\begin{array}{ccccc}
0 & 1 & -2 & 0 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Facts about echelon forms

1. every matrix has a unique reduced row echelon form
2. row echelon forms are not unique

$$
\text { example: }\left[\begin{array}{ccc|c}
1 & 1 & 3 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3. all row echelon forms of a matrix have the same number of zero rows
4. the leading 1's always occur in the same positions in the row echelon forms of a matrix A
5. the columns that contain the leading 1's are called pivot columns of A
6. rank of A is defined as the number of nonzero rows of (reduced) echelon form of A

Inspecting a solution

- simplify the augmented matrix to the reduced echelon form
- read the solution from the reduced echelon form

$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	$\Longrightarrow 0 \cdot x_{3}=1 \quad$ (no solution)
$\left[\begin{array}{cccc}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 5\end{array}\right]$	$\Longrightarrow x_{1}=-2, x_{2}=-1, x_{3}=5 \quad$ (unique solution)
$\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$	$\Longrightarrow x_{1}=2, x_{2}=1 \quad$ (unique solution)

another example

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow \begin{aligned}
& x_{1}+3 x_{2}= \\
& x_{2}-x_{3}= \\
&
\end{aligned}
$$

definition:

- the corresponding variables to the leading 1's are called leading variables
- the remaining variables are called free variables
here x_{1}, x_{2} are leading variables and x_{3} is a free variable let $x_{3}=t$ and we obtain

$$
x_{1}=-3 t-2, \quad x_{2}=t+1, \quad x_{3}=t
$$

(many solutions)

$$
\left[\begin{array}{cccc}
1 & -5 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad x_{1}-5 x_{2}+x_{3}=4
$$

x_{1} is the leading variable, x_{2} and x_{3} are free variables
let $x_{2}=s$ and $x_{3}=t$ we obtain

$$
\begin{array}{ll}
x_{1}=5 s-t+4 & \\
x_{2}=s \\
x_{3}=t & \text { (many solutions) }
\end{array}
$$

by assigning values to s and t, a set of parametric equations:

$$
\begin{aligned}
& x_{1}=5 s-t+4 \\
& x_{2}=s \\
& x_{3}=t
\end{aligned}
$$

is called a general solution of the system

Solution to a linear system

solving $b=A x$ with $A \in \mathbf{R}^{m \times n}$ has only three possibilities

1. no solution: if $\operatorname{rank}([A \mid b]) \neq \operatorname{rank}(A)$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 3 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 2
\end{array}\right], \quad\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

2. unique solution: if $\operatorname{rank}([A \mid b])=\operatorname{rank}(A)=n$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 3 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & 1 & 2
\end{array}\right], \quad\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 2 & 3
\end{array}\right]
$$

3. infinitely many solution: if $\operatorname{rank}([A \mid b])=\operatorname{rank}(A)<n$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 3 & 0 \\
0 & 1 & 2 & -1
\end{array}\right]
$$

Gaussian-Jordan elimination

- simplify an augmented matrix to the reduced row echelon form
- inspect the solution from the reduced row echelon form
- the algorithm consists of two parts:
- forward phase: zeros are introduced below the leading 1's
- backward phase: zeros are introduced above the leading 1's
example:

$$
\begin{array}{ll}
x_{1}+x_{2}+2 x_{3} & =8 \\
-x_{1}-2 x_{2}+3 x_{3} & =1 \\
3 x_{1}-7 x_{2}+4 x_{3} & =10
\end{array} \Longrightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
-1 & -2 & 3 & 1 \\
3 & -7 & 4 & 10
\end{array}\right]
$$

use row operations

$$
\begin{aligned}
& R_{1}+R_{2} \rightarrow R_{2} \quad-3 R_{1}+R_{3} \rightarrow R_{3} \quad(-1) \cdot R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
3 & -7 & 4 & 10
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & -1 & 5 & 9 \\
0 & -10 & -2 & -14
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & -10 & -2 & -14
\end{array}\right]} \\
& 10 R_{2}+R_{3} \rightarrow R_{3} \quad R_{3} /(-52) \rightarrow R_{3} \\
& {\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & -52 & -104
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
& \text { (a row echelon form) }
\end{aligned}
$$

we have added zero below the leading 1's (forward phase)
continue performing row operations

$$
\begin{gathered}
5 R_{3}+R_{2} \rightarrow R_{2} \\
\left.\qquad \begin{array}{llll}
1 & 1 & 2 & 8 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \quad-R_{2}+R_{1} \rightarrow R_{1}
\end{gathered} \begin{array}{ll}
{\left[\begin{array}{llll}
1 & 0 & 2 & 7 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]}
\end{array} \begin{aligned}
& -2 R_{3}+R_{1} \rightarrow R_{1} \\
&
\end{aligned} \begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
& \text { (reduced echelon form) }
\end{aligned}
$$

we have added zero above the leading 1's (backward phase)
from the reduced echelon form, $\operatorname{rank}([A \mid b])=\operatorname{rank}(A)=n$
the system has a unique solution

$$
x_{1}=3, \quad x_{2}=1, \quad x_{3}=2
$$

Homogeneous linear systems

definition:

a system of linear equations is said to be homogeneous if b_{j} 's are all zero

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =0 \\
\vdots & =\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =0
\end{aligned}
$$

- $x_{1}=x_{2}=\cdots=x_{n}=0$ is the trivial solution to $A x=0$
- if $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a solution, so is $\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)$ for any $\alpha \in \mathbf{R}$
- hence, if a solution exists, then the system has infinitely many solutions (by choosing α arbitrarily)
- if z and w are solutions to $A x=0$, so is $z+\alpha w$ for any $\alpha \in \mathbf{R}$
example

$$
\begin{array}{ll}
x_{1}-x_{2}+2 x_{3}-x_{4} & =0 \\
2 x_{1}+x_{2}-2 x_{3}-2 x_{4} & = \\
-x_{1}+2 x_{2}-4 x_{3}+x_{4} & =0 \\
3 x_{1}-3 x_{4} & =
\end{array} \quad \Longrightarrow \quad\left[\begin{array}{ccccc}
1 & -1 & 2 & -1 & 0 \\
2 & 1 & -2 & -2 & 0 \\
-1 & 2 & -4 & 1 & 0 \\
3 & 0 & 0 & -3 & 0
\end{array}\right]
$$

the reduced echelon form is

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \Longrightarrow \quad \begin{aligned}
& x_{1}-x_{4}=0 \\
& x_{2}-2 x_{3}=0
\end{aligned}
$$

define $x_{3}=s, x_{4}=t$, the parametric equation is

$$
x_{1}=t, \quad x_{2}=2 s, \quad x_{3}=s, \quad x_{4}=t
$$

there are two nonzero rows, so we have two $(n-2=2)$ free variables

Properties of homogeneous linear system

more properties:

- the last column of the augmented matrix is entirely zero (and hence, can be neglected in the augmented matrix)
- if the reduced row echelon form has r nonzero rows, then the system has $n-r$ free variables
- a homogeneous linear system with more unknowns than equations has infinitely many solutions

MATLAB commands

rref (A) produces the reduced row echelon form of a matrix A

```
>> A = [lllllllllllllllll
A =
\begin{tabular}{llll}
-1 & 2 & 4 & 1
\end{tabular}
\begin{tabular}{llll}
0 & 1 & 2 & 1
\end{tabular}
    2 3 6 5
>> rref(A)
ans =
\begin{tabular}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{tabular}
```


References

Chapter 1 in
H. Anton, Elementary Linear Algebra, 10th edition, Wiley, 2010

