8. Complex Numbers

- sums and products
- basic algebraic properties
- complex conjugates
- exponential form
- principal arguments
- roots of complex numbers
- regions in the complex plane

Introduction

we denote a complex number z by

$$
z=x+j y
$$

where

- $x=\operatorname{Re}(z)$ (real part of z)
- $y=\operatorname{Im}(z)$ (imaginary part of z)
- $j=\sqrt{-1}$

Sum and Product

consider two complex numbers

$$
z_{1}=x_{1}+j y_{1}, \quad z_{2}=x_{2}+j y_{2}
$$

the sum and product of two complex number are defined as:

- $z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)$
addition
- $z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(y_{1} x_{2}+x_{1} y_{2}\right)$
multiplication
example:

$$
(-3+j 5)(1-2 j)=7+j 11
$$

Algebraic properties *

- $z_{1}=z_{2} \Longleftrightarrow \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$
- $z_{1}+z_{2}=z_{2}+z_{1}$
- $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$
- $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$
- $-z=-x-j y$
- $z^{-1}=\frac{x}{x^{2}+y^{2}}-j \frac{y}{x^{2}+y^{2}}$
equality
commutative associative distributive addtive inverse multiplicative inverse

Complex conjugate and Moduli

modulus (or absolute value): $|z|=\sqrt{x^{2}+y^{2}}$
complex conjugate: $\bar{z}=x-j y$

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
triangle inequality
- $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
- $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
- $\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$
- $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$, if $z_{2} \neq 0$
- $\operatorname{Re}(z)=(z+\bar{z}) / 2$ and $\operatorname{Im}(z)=(z-\bar{z}) / 2 j$

Argument of complex numbers

principal value of $\arg z$ denoted by $\operatorname{Arg} z$ is the unique θ such that $-\pi<\theta \leq \pi$

$$
\arg z=\operatorname{Arg} z+2 n \pi, \quad(n=0, \pm 1, \pm 2, \ldots)
$$

example: $\operatorname{Arg}(-1+j)=\frac{3 \pi}{4}, \quad \arg z=\frac{3 \pi}{4}+2 n \pi, \quad n=0, \pm 1, \ldots$

Polar representation

Euler's formula ${ }^{*}$

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

a polar representation of $z=x+j y($ where $z \neq 0)$ is

$$
z=r e^{j \theta}
$$

where $r=|z|$ and $\theta=\arg z$
example:

$$
(-1+j)=\sqrt{2} e^{j 3 \pi / 4}=\sqrt{2} e^{j(3 \pi / 4+2 n \pi)}, \quad n=0, \pm 1, \ldots
$$

(there are infinite numbers of polar forms for $-1+j$)
let $z_{1}=r_{1} e^{j \theta_{1}}$ and $z_{2}=r_{2} e^{j \theta_{2}}$
properties

- $z_{1} z_{2}=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}$
- $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{j\left(\theta_{1}-\theta_{2}\right)}$
- $z^{-1}=\frac{1}{r} e^{-j \theta}$
- $z^{n}=r^{n} e^{j n \theta}, \quad n=0, \pm 1, \ldots$

de Moivre's formula

$$
(\cos \theta+j \sin \theta)^{n}=\cos n \theta+j \sin n \theta, \quad n=0, \pm 1, \pm 2, \ldots
$$

example: prove the following trigonometric identity

$$
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

from de Moivre's formula,

$$
\begin{aligned}
\cos 3 \theta+j \sin 3 \theta & =(\cos \theta+j \sin \theta)^{3} \\
& =\cos ^{3} \theta+j 3 \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-j \sin ^{3} \theta
\end{aligned}
$$

and the identity is readily obtained from comparing the real part of both sides

Arguments of products

an argument of the product $z_{1} z_{2}=r_{1} r_{2} e^{j\left(\theta_{1}+\theta_{2}\right)}$ is given by

$$
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}
$$

example: $z_{1}=-1$ and $z_{2}=-1+j$

$$
\arg \left(z_{1} z_{2}\right)=\arg (1-j)=7 \pi / 4, \quad \arg z_{1}+\arg z_{2}=\pi+3 \pi / 4
$$

this result is not always true if arg is replaced by Arg

$$
\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}(1-j)=-\pi / 4, \quad \operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=\pi+3 \pi / 4
$$

(2) more properties of the argument function

- $\arg (\bar{z})=-\arg z$
- $\arg (1 / z)=-\arg z$
- $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$
(no need to memorize these formulae)

Roots of complex numbers

an nth root of $z_{0}=r_{0} e^{j \theta_{0}}$ is a number $z=r e^{j \theta}$ such that $z^{n}=z_{0}$, or

$$
r^{n} e^{j n \theta}=r_{0} e^{j \theta_{0}}
$$

note: two nonzero complex numbers

$$
z_{1}=r_{1} e^{j \theta_{1}} \quad \text { and } \quad z_{2}=r_{2} e^{j \theta_{2}}
$$

are equal if and only if

$$
r_{1}=r_{2} \quad \text { and } \quad \theta_{1}=\theta_{2}+2 k \pi
$$

for some $k=0, \pm 1, \pm 2, \ldots$
therefore, the nth roots of z_{0} are

$$
z=\sqrt[n]{r_{0}} \exp \left[j\left(\frac{\theta_{0}+2 k \pi}{n}\right)\right] \quad k=0, \pm 1, \pm 2, \ldots
$$

all of the distinct roots are obtained by

$$
c_{k}=\sqrt[n]{r_{0}} \exp \left[j\left(\frac{\theta_{0}+2 k \pi}{n}\right)\right] \quad k=0,1, \ldots, n-1
$$

the roots lie on the circle $|z|=\sqrt[n]{r_{0}}$ and equally spaced every $2 \pi / n$ rad
when $-\pi<\theta_{0} \leq \pi$, we say c_{0} is the principal root
example 1: find the n roots of 1 for $n=2,3,4$ and 5

$$
1=1 \cdot \exp [j(0+2 k \pi)], \quad k=0, \pm 1, \pm 2, \ldots
$$

the distinct n roots of 1 are

$$
c_{k}=\sqrt[n]{r_{0}} \exp \left[j\left(\frac{0+2 k \pi}{n}\right)\right] \quad k=0,1, \ldots, n-1
$$

$n=2$

$n=3$

$n=4$

$n=5$
example 2: find $(-8-j 8 \sqrt{3})^{1 / 4}$
write $z_{0}=-8-j 8 \sqrt{3}=16 e^{j(-\pi+\pi / 3)}=16 e^{j(-2 \pi / 3)}$
the four roots of z_{0} are

$$
c_{k}=(16)^{1 / 4} \exp \left[j\left(\frac{-2 \pi / 3+2 k \pi}{4}\right)\right] \quad k=0,1,2,3
$$

$$
\begin{aligned}
& c_{0}=2 e^{j(-2 \pi / 12)}=2 e^{-j \pi / 6}=\sqrt{3}-j \\
& c_{1}=2 e^{j\left(\frac{-2 \pi / 3+2 \pi}{4}\right)}=2 e^{j \pi / 3}=1+j \sqrt{3} \\
& c_{1}=2 e^{j\left(\frac{-2 \pi / 3+4 \pi}{4}\right)}=2 e^{j 5 \pi / 6}=-\sqrt{3}+j \\
& c_{1}=2 e^{j\left(\frac{-2 \pi / 3+6 \pi}{4}\right)}=2 e^{j 4 \pi / 3}=-1-j \sqrt{3}
\end{aligned}
$$

Regions in the Complex Plane

- interior, exterior, boundary points
- open and closed sets
- loci on the complex plane

Regions in the complex plane

$$
\text { an } \epsilon \text { neighborhood of } z_{0} \text { is the set }
$$

$$
\left\{z \in \mathbf{C}\left|\left|z-z_{0}\right|<\epsilon\right\}\right.
$$

Definition: a point z_{0} is said to be

- an interior point of a set S if there exists a neighborhood of z_{0} that contains only points of S
- an exterior point of S when there exists a neighborhood of it containing no points of S
- a boundary point of S if it is neither an interior nor an exterior point of S
the boundary of S is the set of all boundary points of S
examples on the real axis: $S_{1}=(0,1), S_{2}=[0,1]$, and $S_{3}=(0,1]$
in real analysis, an ϵ neighborhood of $x_{0} \in \mathbf{R}$ is the set

$$
\left\{x \in \mathbf{R}\left|\left|x-x_{0}\right|<\epsilon\right\}\right.
$$

- any $x \in(0,1)$ is an interior point of S_{1}, S_{2}, and S_{3}
- any $x \in(-\infty, 0) \cup(1, \infty)$ is an exterior point of S_{1}, S_{2} and S_{3}
- 0 and 1 are boundary points of S_{1}, S_{2} and S_{3}
examples on the complex plane:

- any point $z \in \mathbf{C}$ with $|z|<1$ is an interior point of A and B
- any point $z \in \mathbf{C}$ with $1 / 2<|z|<1$ is an interior point of C
- any point $z \in \mathbf{C}$ with $|z|>1$ is an exterior point of A and B
- any point $z \in \mathbf{C}$ with $0<|z|<1 / 2$ or $|z|>1$ is an exterior point of C
- the circle $|z|=1$ is the boundary of A and B
- the union of the circles $|z|=1$ and $|z|=1 / 2$ is the boundary of C

Open and Closed sets

- a set is open if and only if each of its points is an interior point
- a set is closed if it contains all of its boundary points
- the closure of a set S is the closed set consisting of all points in S together with the boundary of S
- some sets are neither open nor closed
from the examples on page 8-18 and page 8-19,
- S_{1} is open, S_{2} is closed, S_{3} is neither open nor closed
- S_{2} is the closure of S_{1}
- A is open, B is closed, C is neither open nor closed
- B is the closure of A

Connected sets

an open set S is said to be connected if any pair of points z_{1} and z_{2} in S can be joined by a polygonal line that lies entirely in S

- a nonempty open set that is connected is called a domain
- any neighborhood is a domain
- a domain with some, none, or all of its boundary points is called a region

Bounded sets

a set S is said to be bounded if for any point $z \in S$,

$$
|z| \leq M, \quad \text { for some } M<\infty
$$

otherwise it is unbounded

$$
\begin{aligned}
& \{z \mid \operatorname{Re} z \leq 0\} \\
& \left.\right|_{x} ^{y} \\
& \text { unbounded }
\end{aligned}
$$

Loci in the complex plane

- $|z-a|=r, a \in \mathbf{C}, r \in \mathbf{R}$
- $|z-a|<r, a \in \mathbf{C}, r \in \mathbf{R}$
- $|z-a|=|z-b|, a, b \in \mathbf{C}$

References

Chapter 1 in
J. W. Brown and R. V. Churchill, Complex Variables and Applications, 8th edition, McGraw-Hill, 2009

