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Control System Research Lab
(CSRL)

Established since 1985

Objective To conduct research and development
in areas of control systems,
analysis, design and applications

Stra tegiC Advanced control & optimization,
Research Area embedded systems & robotics



Faculty Members

Watcharapong Khovidhungij

Manop Wongsaisuwan

Suchin Arunsawatwong

David Banjerdpongchai

Jitkomut Songsiri



Students as of Mar 2016

1 PhD

[ Master

14 Undergrad
1 Postdoc




Offerred courses

Linear Control Systems | &I

Computational Techniques for Engineers

Digital Control Systems

Introduction to Mathematical Analysis

Control System Theory
Convex Optimization Multivariable Control

Nonlinear Control Systems

Introduction to Optimization Techniques
System Industrial Control and
ldentification Instrumentation
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Research Activities

Control design and optimization in power systems
Advanced process control

Stability analysis for nonlinear systems

Control design for non-rational MIMO plants

Robotics and SLAM

Sparse optimization in system identification



Economic Optimal Operation of Cogeneration with Heat
Storage for Building Energy Management System

Kebsiri Manusilp and David Banjerdpongchai

Design dispatch strategy of cogeneration with heat storage tank for Building Energy
Management System (BEMS).

EE - EE

KX Power grids K The energy supply of BEMS consists
of combined heat and power (CHP),

an auxiliary boiler, an absorption
chiller and power grids. Normally, CHP
operation will release waste heat so a
heat storage tank (HST) is installed to
utilize the waste heat. Heat storage

constraint is taken into account of
dispatch strategy.

Diagram of Heat storage for BEMS. Diagram of conventional BEMS.

Cogeneration with and without heat storage working under economic optimal
operation are compared to show energy efficiency improvement.
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Cascade MPC and PI control for two-tank

level control process
Paramat Chonbodeechalermroong and David Banjerdpongchai
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This process is a 2-input and 2-output system with
time-delay.

Objective:
Compare the performance
of output signals (PV) from

MPC controller and cascade
controller.



Solar Irradiance and

PV Power Generation Forecasting

Rujipart Kruakaew and David Banjerdpongchai
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PV output
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We aim to forecast solar irradiance by using physical data that is

collected from satellite images and ground-based stations. Then, we can
forecast PV power generation precisely.
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Iterative Learning Control for Multi-Agent Systems with
Applications to Building Energy Management Systems

Pham Van Tuynh and David Banjerdpongchai

7m

L

Im

hi1

Im

Im

Im

Formulate BEMS as Multi
Agent System (MAS) using
Distributed Controller.
Objective to save energy by
minimizing thermal losses
and control efforts of
tracking temperature profile.
Proposed methodology is
Iterative Learning Control
of MAS



LTT system
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Develop the method for designing a systems in which the plant consists of a sector-

bounded nonlinearity and linear time-invariant convolution plants.

ensure that all the outputs always stay within their prescribed

bounds for any possible input
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Develop the method for designing controllers for LFC of power systems operating under

persistent disturbances

ensure that the system frequency, the generation rate and the power

output from BESS always lie within the the prescribed bounds




Simultaneous Localization and Mapping (SLAM)

Hong Khac Nguyen and Manop Wongsaisuwan

SLAM is the problem of a mobile robot movingin a
previously unknown place in order to incrementally build
a map of that environment while at the same time
specifying its position in the map
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- We aim to investigate a technique to the
problem of finding a motion control__.__..
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This work focuses on UKF-SLAM (Unscented Kalman Filter) which is a derivative-free filter
and produces equal or better results than Extended Kalman filter



Low Cost Controller Design for Mitsubishi PA10 robot arm

Sereiratha Phal and Manop Wongsaisuwan

The Mitsubishi PA-10 is a robotic manipulator which
possesses 7 degrees of freedom, thus a so-called
shoulder, elbow and wrist.

PWM
> MCU |—*
RS-485 Inverter |—#| Robot
AR .
T joint

Resolver Decoder P v
Feedback

Controller design structure

We aim to construct low cost robot controller prototype
based on PID controller for the robot arm which can drive
the joint of the robot according to commend from the PC
to the specific ordered position.

—

Mitsubishi PA-10



Backstepping Controller Design for PDEs

Kananart Kuwaranancharoen and Watcharapong Khovidhungij

Equation: U = Uyy + DU, + Au
Boundary Condition:  u,(0) = —gu(O), u(1,t) =0
Controller:

Raom |0
2
where 1, = 1 — A

Closed-Loop Response 4

u, (1) = —%(AO + bu(1) — fol A o —2(1-¥) lll(m) L(VZ1-7?)

Open-Loop Response

Of)jéctivoe:
Design the Backstepping Controller to stabilize Linear
and Non-linear Parabolic PDE and Simulate the results




Sparse Optimization in System Identification
Jitkomut Songsiri

Sparse Dynamical System
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Sparse structure in brain signals

(FMRI time series)
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Benefits of having sparse representation or
parsimonious models

# avoid over Fitting in estimation

# provide a meaningful relationship between
variables in the system
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z = Ax + Bu sparse dynamic matrix
y(t) = [ h(t — 7)u(r)dr sparseimpulse matrix

S(w) = Zziﬁoo Rpe—iek

sparse spectrum

sparse inverse spectrum
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A Convex Formulation of
Structural Equation Modeling in fMRI Study

Anupon Pruttiakaravanich and Jitkomut Songsiri

Nonzero entries in the path matrix (A)
represent a causal relationship between
two regions.

A;; = 0:No path or
relationship from Y; to V;

Using a convex optimization
framework to seek a sparse
matrix A and noise covariance
1 such that an estimated
covariance X is close to its
sample covariance matrix Sin
the sense that the Kullback-
Leiber divergence function is
minimized.

min logdet(Z) + tr(S2~1) — logdet(S)-n
2'1/)

subject to
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P(A) =0

with variable A € R™™,y € §},Z € S}
and P(A) explains the zero constraint on
the entries of A.



Classification of normal and abnormal knee
by knee vibration signal

An accelerometer
attached to patients knee.

The signals and their MMWVWM e g I
time-frequency plot. “ B e B
The high magnitude indicates « o
the more possibilitieson .
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abnormality. + +




Collaborative Network
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